机械振动是普遍存在工程实际中,这种振动往往会影响其工作精度,加剧及其的磨损,加速疲劳损坏;同时由于磨损的增加和疲劳损坏的产生又会加剧机械设备的振动,形成一个恶性循环,直至设备发生故障,导致系统瘫痪、损坏。同时机械设备的工作环境也是造成机械设备发生故障主要原因之一,因此,根据对机械振动信号和工作环境温度、湿度的测量和分析,不用停机和解体方式,就可以对机械的恶劣程度和故障性质有所了解。同时根据以往经验建立相应的处理机制库,从而针对不同的故障做出相应的诊断和处理。整个处理过程如下:
1)传感器采集设备工作状态信号。如各种传动装置的振动信号、温度信号、液压装置的压力、流量和功率信号等。
2)特征信号提取。将各种传感器采集信号进行信号分类,刷选出相应的传感器信号,如振动传感器采集的文振动强度信号、压力传感器采集的压力信号等。
3)对特征信号处理。对传感器采集的特征信号进行滤波、放大等处理,提取出相应的特征信号。
4)对采集信号进行故障诊断。将提取的特征信号进行判断处理,选择相应的故障方法(如小波变换法),分析故障类型和设备状态,然后查询故障类型库,做出相应的决策。
4 结束语
建立在现代故障诊断技术上的钢铁冶炼设备故障诊断系统,可对设备的运行状态进行实时在线检测、通过对其监测信号的处理与分析,可真实地反映出设备的运行状态和松动磨损等情况的发展程度及趋势,为预防事故、科学合理安排检修提供依据,可以提高设备的利用效率,产生了很大的经济价值,对此类故障诊断系统的研究有很深远的意义。
参考文献:
[1] 沈庆根,郑水英.设备故障诊断[M].北京:化学工业出版社,2006.
[2] 王仲生.智能故障诊断与容错控制[M].西安:西北工业大学出版社,2005.
[3] 李民中.状态监测与故障诊断技术在煤矿大型机械设备上的应用[J].煤矿机械,2006(03).
[4] 傅其凤,葛杏卫.基于BP神经网络的旋转机械故障诊断[J].煤矿机械,2006(04).
[5] 李光民,陈燕.振动监测和故障诊断技术在冶金机电设备的应用[J].河南冶金,2008(3):44-46.
[6] 刘兆阳.大型旋转机械状态监测与故障诊断系统的设计研究[J].通用机械,2006(01):30-33.