如果系统设计运能为30对/h,全线运能控制点是车站折返线,则车站折返线和信号的配置能力应比设计运能大10%~15%,符合运能风险储备的要求。若运营设备配置的运能为34对/h,贝悄备系数为13%。
如果实际客流小于预测值,按远期高峰小时段的列车运行间隔时间不得大于3min的要求,即:运行密度为不小于20对/h,列车编组及长度不变,设计运能调整为24或20对/h,即适应预测客流下降20%-30%的下限。
根据当前的预测方法,参照国内外经验,因为城市规划往往是超前性较大,故预测数据向高突破较少;而城市中各种交通的竞争性和票价定位的适当与否,却对客流造成的波动影响很大。所以,客流风险正值取10%,负值取-30%,是比较符合实际。作为基本风险的波动范围是比较恰当的。
实际经验告诉我们,初、近期和远期的列车编组应采用不同长度的列车编组方案是值得推广的设计思路。使初近期运行的短列车,尽可能采用提高运行密度的方法提高运能,跟随实际客流的增长,直至达到最大运行密度。如果实际客流小于预测值,可以延缓长列车投入运行,既不降低运行服务水平,也充分发挥运营效益,这是最好的抗风险设计。
4.2.2 对突破性风险的转移性设计
上述抗基本风险设计是做了限定条件的,如果突破了限定条件,就叫突破性风险。那么是否会产生更大的风险,这是人们所关心的重要问题。因此对突破性风险必须进行风险转移设计——即“削峰”设计,是一种在特定条件下的合理设计和避风险措施。
系统的设计运能是按全线高峰小时单向最大断面流量值来决定的。但是在全线各区间的高峰小时断面流量不是相同的。因此我们可以按上、下行分别列出第一、第二、第三的高峰值,并再将其余的断面流量按不同的运量级进行分段划分,可以得到各段运能的储备系数。根据系统能适应的最大运能为界线,对突破的客流进行“削峰”设计。
“削峰’设计是仅限于对个别或少数的尖峰客流的处理。例如:某条线路的上行方向高峰小时单向断面最大流量为3.50万人次,第二高断面为3.4万人次m,第三高断面为2.98 万人次/h;下行方向高峰小时单向断面最大流量为3.00万人次,第二高断面为2.81万人/h,第三高断面为2.67 万人次/h;如果以大于3万人次/h为突破界线,可见突破3万人脚h的折面仅需对上行方向2处锋客流进行“削峰”设计。经过站间OD客流的分析,利用票价上浮的敏感效应,对于经过尖峰的部分短途客流实现“自动”转移,达到“削峰”设计目的。使新的高断面客流与运行通过能力相适应。但是这种风险转移的做法,对于转移量是要得到严格控制的。
如果客流高峰全线大部分区间有较大的突破,则无法进行“削峰”设计,这说明线路运能已经饱和,也许应该新建其他规划线路来实现分流;也许应该对系统‘潜在运能’再次开发。这种情况实际上是对未来的远景年可能发生的估计,可能对现有运营设备,主要是信号系统需要进行全面升级改造和开发。
由于近年来,尤其是信号系统发展较快,技术上不断的改进和创新,列车运行间隔时间还可能减小,使列车运行通过能力得到继续提高,这就要开发系统的‘潜在运能以适应新的运量需要,这是可能的,也是有限的。
5 小结
综上所述,本文对客流预测的风险性做了有限性和突破性分析,提出了可信性评价的要点,采取了面对现实的观点,创建了抗风险设计的理念,对运能设计提出了的适应性和转移性(削峰)的抗风险措施,使客流预测的数据与运营能力设计之间,具有较大适应弹性。对于轨道交通运营组织采取分期设计很重要,如何分别确定初、近期和远期的车辆编组和行车密度至关重要。总之,在远期运营系统设计时,必须充分考虑客流预测的风险,做好抗风险的适应性分析是十分必要的;但是如何使客流预测提高可信度,仍然是需要努力攀登的永无止境的高峰。