基于数据挖掘技术的保险行业决策分析研究(3)

2012-08-19 23:07


  i++;
  }
  }
  }
  通过模式树的建立可以避免多次扫描事务数据库;同时利用count域有效的保留了项集的数目,避免大量产生频繁项集,对于减小空间时间复杂度起到了一定的作用。通过树形结构可以避免产生大量冗余规则。
  通过对模式树的剪枝,可以减除在模式树产生过程中产生的大量冗余分枝,起到了减小空间复杂度的作用,同时可以利用输出模式B产生规则,避免了多项集的频繁出现,减小了时间复杂度。
  
  4 结束语
  本项目中通过模式树结构改进了Apriori算法,弥补了Apriori算法存在的缺陷。此种方法既能够对Apriori算法从时间复杂度和空间复杂度上进行改进,同时又避免了中间规则的产生。本研究表明,通过利用一个模式树结构来降低Apriori算法的存储复杂度,并同时减少冗余规则的出现,这对于Apriori算法的改进是一种有效的措施。
  
  参考文献
  [1]邓纳姆.数据挖掘教程[M].郭崇慧,田凤占,靳晓明,等译.北京:清华大学出版社,2005.
  [2]苏新宁,杨建林,江念南,等.数据仓库和数据挖掘[M].北京:清华大学出版社,2006.
  [3]GAL C S, KANTOR P B, SHAPIRA B. Security Informatics and Terrorism: Patrolling the Web. Amsterdam: IOS Press,2008.
  [4]BORGES J, LEVENE M. Evaluating Variable Length Markov Chain Models for Analysis of User Web Navigation Sessions.IEEE Transactions on Knowledge and Data Engineering.2007,19(4): 441-452.

基于数据挖掘技术的保险行业决策分析研究(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:现代网络出版的特点及发展前景

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: