数字图像中边缘检测算法综合研究

2012-08-21 19:44

摘  要  边缘是图像最基本的特征,包含图像中用于识别的有用信息,本文详细介绍了现有边缘检测技术和方法,给出了边缘检测的一般步骤,分析了边缘检测“两难”问题,描述了实际图像中可能出现的边缘类型的数学模型,探讨了解决“两难”问题的方法。     关键字  计算机视觉;边缘检测;图像处理;边缘模型  

1  引言

    计算机视觉包括两部分:低层视觉和高层视觉。低层视觉即为图像处理,包括图像增强、噪声滤除和边缘检测等部分;高层视觉包括图像分析和图像理解,主要是模拟人类对图像信息的认知和决策能力。图像信息量巨大,而边缘信息是图像的一种紧描述,是图像最基本的特征,所包含的也是图像中用于识别的有用信息。所谓边缘是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,为人们描述或识别目标以及解释图像提供了一个有价值的和重要的特征参数,其算法的优劣直接影响着所研制系统的性能。长期以来,人们已付出许多努力,设法利用边界来寻找区域,进而实现物体的识别和景物分析,由于目标边缘、图像纹理甚至噪声都可能成为有意义的边缘,因此很难找到一种普适性的边缘检测算法,现有诸多边缘检测的方法各有其特点,同时也都存在着各自的局限性和不足之处,因此图像的边缘检测这个领域还有待于进一步的改进和发展。而根据具体应用的要求,设计新的边缘检测方法或对现有的方法进行改进,以得到满意的边缘检测结果依然是研究的主流方向[1,2,3]    本文详细介绍并比较了现有边缘检测技术和方法,给出了边缘检测的一般步骤,在分析了边缘检测“两难”问题的基础上,描述了实际图像中可能出现的边缘类型的数学模型,分析比较了不同边缘类型表现出的特性及不同类型的边缘定位与平滑尺度的关系。

2  边缘检测的分类及算法研究

    早在1965年就有人提出边缘检测算子[4],主要分为经典算子、最优算子、多尺度方法及自适应平滑滤波方法,近年来又提出了将模糊数学、神经元网络和数学形态学应用于边缘检测的思想。

2.1  经典算子

    传统的边缘检测算法通过梯度算子来实现,在求边缘的梯度时,需要对每个象素位置计算。在实际中常用小区域模板卷积来近似计算,模板是N*N的权值方阵,经典的梯度算子模板:Sobel模板、Kirsch模板、Prewitt模板、Roberts模板、Laplacian模板等[2],表2.1给出了经典算子运算速度的比较。

    可以看出,Krisch算子的运算量比较大。其次在边缘检测中边缘定位能力和噪声抑制能力方面,有的算子边缘定位能力强,有的抗噪声能力比较好:Roberts算子利用局部差分算子寻找边缘,边缘定位精度较高,但容易丢失一部分边缘,同时由于没经过图像平滑计算,不能抑制噪声。该算子对具有陡峭的低噪声图像响应最好;Sobel算子和Prewitt算子都是对图像进行差分和滤波运算,差别只是平滑部分的权值有些差异,对噪声具有一定的抑制能力,不能完全排除检测结果中出现伪边缘。这两个算子的边缘定位比较准确和完整,但容易出现边缘多像素宽。对灰度渐变和具有噪声的图像处理的较好;Krisch算子对8个方向边缘信息进行检测,因此有较好的边缘定位能力,并且对噪声有一定的抑制作用,该算子的边缘定位能力和抗噪声能力比较理想;Laplacian算子是二阶微分算子,对图像中的阶跃型边缘点定位准确且具有旋转不变性即无方向性。但该算子容易丢失一部分边缘的方向信息,造成不连续的检测边缘,同时抗噪声能力比较差,比较适用于屋脊型边缘检测(将在第3节中讨论)。

数字图像中边缘检测算法综合研究.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:解决企业局域网IP地址冲突被盗用的几种策略方法

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: