2.1 方案1
全车(以带司机室为例)以空调器置于车内,送风口布置及风道系统布置图见图2(注:系统图中10 部分管道是指带司机室车的风道布置,其尺寸为0.1 m×0.2 m, 而无司机室车的风道布置则没有该部分) 。每两相邻风口中心线距离为2.35 m, 司机室送风量为54 m3/h。本文以带司机室车为例,按负荷计算的总送风量为9 878 m3/h、每车选2台空调器计算,则每台空调器送风量计为V =4 939 m3/h。方案1风道阻力计算列于表1, 风道阻力计算用风系统单线图与系统特征图见图2。特征图中的虚线表示通风系统的最大阻力线,图中矩形块的数字与单线图中的数字对应。
图2 方案1系统的单线图和特征图
表1 方案1 风道阻力计算数据表
表2 方案2 风道阻力计算数据表
图3 方案2 系统的单线图和特征图
2. 3 方案3 风口布置及风道系统布置图与系统特征图见图4 ,
风道阻力计算列于表3 。全车(以带司机室为例) 以空调器顶置于车内,
图4 方案3 系统的单线图和特征图具有静压箱作用的主风道,测得各部分阻力分配均
2. 4 实际通风方案的比较匀。方案2 实际上是方案1 的一种变型,也充分利
根据试验测定报告[ 3 ] ,方案1 充分考虑利用地用有限空间,设置了具有静压箱作用的主风道,各铁车辆内的有限空间,系统布置比较流畅,设置了部分阻力分配较为均匀;但由于主风道中存在一个较大的弯头,增大了风道系统的阻力,与方案1 相比系统的阻力大一些。方案3 没有设置主风道,没有充分利用空间来布置风道,各部分阻力分配不均匀,测得噪声较大。因此,最后选择方案1 作为最佳的设计方案。
表3 方案3 风道阻力计算数据表
3 系统特征图的应用
利用通路线,从特征图中得出方案3 的最大阻力为266 Pa , 远大于方案1 的最大阻力值148 Pa 与方案2 的最大阻力值160 Pa 。
利用节点线,比较3 种方案的流量平衡。从特征图中得出方案1 与方案2 各个部分的支流流量的分配相对于方案3 的支流流量分配更加均匀合理。
利用回路线,比较3 种方案的压力平衡。从特征图中得出方案3 各部分之间的最大压力差值为119 Pa , 大于方案1 各部分之间最大压力差值21 Pa 与方案2 各部分之间的最大压力差值34 Pa 。
此外,还可计算3 种方案的通风功耗。根据前述的原理,总功耗等于特征图中各个方块的面积之和,由此可得方案1 的总功耗为177 W , 方案2 的总功耗为179 W , 方案3 的总功耗为255 W 。从节省能量的角度考虑,方案1 为最佳。
这样,从最大阻力、流量平衡、压力平衡以及通风总功耗出发分析得出,方案1 与方案2 的综合性能好于方案3 。用上述同样的办法,分析出方案1 比方案2 的性能好。由此在这3 个方案中选择方案1 , 与试验测定报告得到的结论一致。
本文借用系统特征图的概念与方法,对地铁车辆的通风系统方案的选择进行了分析,得到令人满意的结论,并与实际测试报告的结果完全吻合。文中所提出的方法考虑了通风系统的综合性能,具有一定的参考价值,该方法也能运用到其它的空调通风设计中。
参 考 文 献
1 徐瑞龙. 用于地下通风系统管理的系统特征图. 暖通空调,2000 , (5) :80~82
2 谢朝军. 地铁通风网络的数学模型及电算方法初探. 现代隧道技术,2001 , (6) :53~56
3 中南大学制冷空调研究所. 北京地铁车辆空调通风系统性能试验研究报告,2001