[21]首先将1-D HMM和2-D Pseudo HMM用于人脸识别。Kohir等[22]采用低频DCT系数作为观察矢量获得了好的识别效果,如图2(a)所示。Eickeler等[23]采用2-D Pseudo HMM识别DCT压缩的JPEG图像中的人脸图像;Nefian等采用嵌入式HMM识别人脸[24],如图2(b)所示。后来集成coupled HMM和HMM通过对超状态和各嵌入状态采用不同的模型构成混合系统结构[25]。
基于HMM的人脸识别方法具有以下优点:第一,能够允许人脸有表情变化,较大的头部转动;第二,扩容性好.即增加新样本不需要对所有的样本进行训练;第三,较高的识别率。
(a) (b)
图2 (a) 人脸图像的1-D HMM (b) 嵌入式隐马尔科夫模型
5)基于神经网络的方法
Gutta等[26]提出了混合神经网络、Lawrence等[27]通过一个多级的SOM实现样本的聚类,将卷积神经网络CNN用于人脸识别、Lin等[28]采用基于概率决策的神经网络方法、Demers等[29]提出采用主元神经网络方法提取人脸图像特征,用自相关神经网络进一步压缩特征,最后采用一个MLP来实现人脸识别。Er等[30]采用PCA进行维数压缩,再用LDA抽取特征,然后基于RBF进行人脸识别。Haddadnia等[31]基于PZMI特征,并采用混合学习算法的RBF神经网络进行人脸识别。神经网络的优势是通过学习的过程获得对这些规律和规则的隐性表达,它的适应性较强。
6)弹性图匹配方法
Lades等提出采用动态链接结构(DLA,Dynamic Link Architecture)[32]的方法识别人脸。它将人脸用格状的稀疏图如图3所示。
图3 人脸识别的弹性匹配方法
图3中的节点用图像位置的Gabor小波分解得到的特征向量标记,图的边用连接节点的距离向量标记。Wiskott等人使用弹性图匹配方法,准确率达到97.3%。Wiskott等[33]将人脸特征上的一些点作为基准点,构成弹性图。采用每个基准点存储一串具有代表性的特征矢量,减少了系统的存储量。Wurtz等[34]只使用人脸ICI部的特征,进一步消除了结构中的冗余信息和背景信息,并使用一个多层的分级结构。Grudin等[35]也采用分级结构的弹性图,通过去除了一些冗余节点,形成稀疏的人脸描述结构。另一种方法是,Nastar等[36]提出将人脸图像I(x,y)表示为可变形的3D网格表(x,y,I(x,y)),将人脸匹配问题转换为曲面匹配问题,利用有限分析的方法进行曲面变形,根据两幅图像之间变形匹配的程度识别人脸。
7)几种混合方法的有效性
(1)K-L投影和奇异值分解(SVD)相融合的分类判别方法。
K-L变换的核心过程是计算特征值和特征向量。而图像的奇异值具有良好的稳定性,当图像有小的扰动时,奇异值的变化不大。奇异值表示了图像的代数特征,在某种程度上,SVD特征同时拥有代数与几何两方面的不变性。利用K-L投影后的主分量特征向量与SVD特征向量对人脸进行识别,提高识别的准确性
人脸识别综述与展望(3)
2012-08-21 20:22
人脸识别综述与展望(3).doc
将本文的Word文档下载到电脑
下载失败或者文档不完整,请联系客服人员解决!