遗传算法程序设计探讨(3)
2012-08-21 20:38
2)从程序代码
//将上一代的最优个体传回主程序
MPI_Send(Rchrom1,chrom,MPI_UNSIGNED,0,gen,MPI_COMM_WORLD);
//每九代接收一个最优个体并将其加入种群中替换掉最差个体
if(gen%9==0)
{
PI_Bcast(Rchrom2,chrom,MPI_UNSIGNED,0,MPI_COMM_WORLD);
Tsp.IndiAlternate(Rchrom2);
}
//进行下一代的计算
Tsp.Aternate();
Tsp.Generation();
Tsp.Statistics();
3)并行遗传算法的性能
笔者在MPI并行环境下,用C++语言实现了一个解决TSP问题的粗粒度模型的并行遗传算法。该程序采用的是主从式的MPI程序设计,通过从硬盘的文件中读取数据来设置染色体长度、种群的规模、交叉概率和变异概率等参数。试验环境为曙光TC1700机,测试的对象是Oliver TSP问题的30个城市的TSP问题。
正如在测试串行遗传算法所提到的数据结果,并行遗传算法也没有达到目前所记录的最好解,但是它提高了算法的收敛性,并行遗传算法的收敛趋势如图2所示[4]。
图2 遗传算法的收敛过程
遗传算法程序设计探讨(3).doc
将本文的Word文档下载到电脑
下载失败或者文档不完整,请联系客服人员解决!