基于模糊理论的图像分割算法研究(一)(6)

2012-08-21 20:42

其中分割准则P 适用于所有象素,由它来确定各区域元素的相同特性。上述数学条件说明了图像分割算法的一些特点,凡不符合以上特点的图像处理算法则不能称为图像分割算法。

目前,在己提出的多种类型的分割算法中,大致可以分为基于边缘检测的方法和基于区域的方法。而在实际应用中,这些方法主要又可划分为三种类型: 边缘检测型、阈值型和区域跟踪型。本文的讨论正是基于阈值型图像分割方法展开的。

4.2 基于阈值的分割 4.2.1方法定义与特点
基于阈值的分割方法是一种应用十分广泛的图像分割技术。所谓阈值分割方法的实质是利用图像的灰度直方图信息得到用于分割的阈值。它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的象素是同一个物体。它不仅可以极大的压缩数据量,而且也大大简化了图像信息的分析和处理步骤。因此,在很多情况下,是进行图像分析、特征提取与模式识别之前必要的图像预处理过程。它特别适用于目标和背景占据不同灰度级范围的图像。阈值分割方法的最大特点是计算简单,运算效率高,在重视运算效率的应用场合,它得到了广泛的应用。

4.2.2阈值的分割的描述
设(x,y)是二维数字图像的平面坐标,图像灰度级的取值范围是G= {0,  1,  2,…L-1 }(习惯上0代表最暗的像素点,L-1代表最亮的像素点),位于坐标点(x, y)上的像素点的灰度级表示为f (x,  y)。设t∈G为分割阈值,B= {b0, b 1}代表一个二值灰度级,并且b0, b1∈B。于是图像函数f 1(x,y)在阈值t上的分割结果可以表示为:

阈值分割法实际就是按某个准则函数求最优阈值t的过程。域值一般可写成如下的形式:

T=T[x,y,  f (x,Y),p (x,y)]                    

其中f (x,  y)是在像素点(x, y)处的灰度值,p(x,y)是该点邻域的某种局部性质。4.3.3阈值分割方法的分类

通过上文的讨论,结合所给公式,可以将阈值分割方法分为以下3类:

1)      全局阈值:T=T[p(x,y)〕,即仅根据f(x,y)来选取阈值,阈值仅与各个图像像素的本身性质有关。

2)      局部阈值:T=T[f(x,y),p(x,y)],阈值与图像像素的本身性质和局部区域性质相关。

3)      动态阈值:T=T[x,y,f(x,y),p(x,y)],阈值与像素坐标,图像像素的本身性质和局部区域性质相关。

   全局阈值对整幅图像仅设置一个分割阈值,通常在图像不太复杂、灰度分布较集中的情况下采用;局部阈值则将图像划分为若干个子图像,并对每个子图像设定局部阈值;动态阈值是根据空间信息和灰度信息确定。局部阈值分割法虽然能改善分割效果,但存在几个缺点:

1)      每幅子图像的尺寸不能太小,否则统计出的结果无意义。

2)      每幅图像的分割是任意的,如果有一幅子图像正好落在目标区域或背景区域,而根据统计结果对其进行分割,也许会产生更差的结果。

3)      局部阈值法对每一幅子图像都要进行统计,速度慢,难以适应实时性的要求。

全局阈值分割方法在图像处理中应用比较多,它在整幅图像内采用固定的阈值分割图像。考虑到全局阈值分割方法应用的广泛性,本文所着重讨论的就是全局阈值分割方法中的直方图双峰法和基于遗传算法的最大类间方差法。在本节中,将重点讨论灰度直方图双峰法,最大类间方差法以及基于遗传算法的最大类间方差法留待下章做继续深入地讨论。


基于模糊理论的图像分割算法研究(一)(6).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:论计算机网络数据交换技术的发展

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: