接触后效率达到18.8%。
过渡金属二硫族层状化合物具有特殊的电子结构,其过渡金属存在分离的d轨
太阳能光电化学转换研究的回顾与展望
道,受 激电子在d-d轨道间跃迁,最大跃迁能为1.1eV-1.8eV,而且不影响化学键,因此其光稳定性好。研究天然晶体MoS2电极发现其光电性能存在各向异性的特征,电极的表面性质是决定光电性能的关键因素,通过离子特性吸附和表面活性剂处理都能明显提高光电流和光电压,FeS2电极则可通过界面配位化学
途径来改善其光电性能。
在三元半导体化合物中研究了CuInS2和CuInSe2及其固溶体的烧结多晶电极,
通过固 溶体的组成变化来改变电极的能隙及电子亲合势,得到CuInS2
(1.51eV)、CuInS1.5Se0.5(1.44eV)、CuInSSe(1.24eV)、CuInS0.5Se1.5(1.13eV)和CuInSe2(1.04eV)不同组成的三元化合物多晶电极,在多硫溶液中以CuInS2,电极的光电流、光电压最大,转换效率达到1.8%,而且间断运行一年光电性能
未见衰减。AgInSe2电极在多碘溶液中的光电化学性能优于CuInSe2。
氧化物半导体一般具有很好的光稳定性能,但存在的问题是能量转换效率较低,
因
此研究的重点是通过光谱敏化、离子掺杂和光电催化作用来改善其光电性能。最有代表性的是TiO2,热氧化制备的多晶薄膜电极在通氮无氧的K4Fe(CN)6和HClO4混合溶液中浸渍,由于K4Fe(CN)6与TiO2表面中的Ti4+形成电荷转移配合物,使TiO2的吸收光谱由400nm扩展到600nm以上。另外,还研究了铱和钴对TiO2电极光电化学反应的催化作用,铱以大量微孔的透光层形式,钴则以高度分散的微岛固定在TiO2电极表面,都能快速捕获光生空穴催化界面光反应氧化,将钴微粒载在多孔铱层产生了更大的光电流,说明铱和钴的联合作用比单一催化剂有更好效果,ZnO电极只能吸收紫外光用染料罗丹明日B进行光谱敏化,明显增加了可见光波长区(400nm-700nm)的光电流。α-Fe2O3薄膜电极用二茂铁化学真空沉积(VCD法)在高纯Ti层上制备,其工作光谱扩展至670nm,比α-Fe2O3能隙相对应的550nm 红移了120nm,这是归因于在热处理过程中Ti由
基底扩散而导致的掺杂效应。
2有机光敏染料的光电能量转换
自然界绿色植物的光合作用是已知最为有效的太阳光能转换体系。许多人利用类似 叶绿素分子结构的有机光敏染料设计人工模拟光合作用的光能转换体系,进行光电转换的研究。由于有机光敏染料可以自行设计合成,与无机半导体材料相比,材料选择余地大,而且易达到价廉的目标。如金属卟啉和金属酞菁是大Π共轭有机分子与金属组成的配合物,具有较高的化学稳定性,能较强吸收可见光
谱,作为有机光伏材料,它是目前广泛研究的对象。
2.1单层有机光敏染料电极
用真空沉积、旋转涂布和电化学沉积等方法,将有机染料修饰在金属、导电玻璃或 半导体表面上,在电解液中研究其光电性能。在不同金属卟啉化合物中以Zn、Mg为中心金属的光电性能最佳。不同功能取代基如羟基、硝基、胺基、羧基、甲基等对光电性能有明显的影响,说明可以通过改变功能取代基的种类和位置来优化其光电性能。金属酞菁化合物的光电性能也与中心金属密切相关,三价、四
太阳能光电化学转换研究的回顾与展望
价酞菁化合物(AlClPc,GaClPc,InClPc,SiCl2Pc,GeCl2,TiOPc,VOPc)比二价金属酞菁化合物(ZnPc,MgPc,CoPc,SnPc,PbPc,FePc,NiPc)的光电性能优越,这是因为三价、四价金属酞菁的光谱响应较宽,而且分子中的氯原子和氧原子有利于电子传递。酞菁铜的电化学聚合膜由于聚合物分子比单体具有更大的共轭体系,电子更易于移动和迁移,而且电聚膜与垫底接触电阻小,因此表现出比其单体更佳的光电性能。除有机光敏染料外,影响光电性能的还有电解液的
酸碱性和氧化还原性质以及环境中的氧化性和还原性气氛等。
2.2双层有机光敏染料电极
金属卟啉的最大吸收在410nm左右,大于410nm波长的光吸收较弱,金属酞菁则在600-700nm波长有较强的光吸收,将不同光谱响应的二种有机染料如四吡啶卟啉或四甲苯基卟啉与酞菁锌或酞菁铝组合形成双层结构电极,扩展了吸收太阳
光谱响应范围,产生明显的光电性能加合效应。
具有不同半导体性质的有机光敏染料可以构成双层有机p/n结电极,即有机固态异质结太阳电池,如n型的北红类与P型的酞菁类化合物组成的有机异质结太阳电池ITO/MePTC/MPc/Ag(MePTC为北红衍生物,MPc为InClPc、VOPc、GaClPc、TiOPc、H2Pc、ZnPc),其吸收光覆盖了400nm900nm波长的可见光能(MePTC吸收400nm一600nm,MPc吸收600nm900nm波长的可见光),使光电流从单层染料电他的几微安增大到几百微安,电他的填充因子和光电转换效率也显著提高,吸收和荧光光谱研证明MePTC向MPc进行了能量转移,各种MPc在真空镀膜中形成不同分子排列的结构对激子迁移产生影响,因此表现出不同的光电特性。在InClPc膜中进一步用VOPc掺杂改善了InClPc固体膜的晶体状态,使光电流和填充因子呈现出增效行为。说明有机分子的掺杂是提高有机太阳电池光电转换效
率的一条有效的途径。
2.3有机光敏染料分子的有序组合
有机光敏染料(S)和电子给体(D)或受体分子(A)键合的多元光敏偶极分子(S-D-A)作为模拟光合作用反应中心的模型化合物。近来研究非常活跃,如酞菁与球烯分子C60构成电荷转移复合物。卟啉、酞菁与电子受体葱酮键合的二元分子由于加速了分子内光敏电子转移速度,使光电流和光电压都比单元染料分子大。为更好模拟植物光合作用在高度有序体系中进行的高效光能转换,设计合成一系列的二元、三元及四元光敏偶极分子,如卟啉-紫精(S-A)、卟啉-紫精-咔唑(S-A-D),卟啉-对苯二酯-紫精-咔唑(S-A1-A2-D)酞菁-紫精-二茂铁(S-A-D)等。用LB膜技术将分子进行有序组合,研究不同结构的多元偶极分子通过多步电荷转移过程,提高了电荷分离效率,使它们的光电流和光电压:四元分子>三元>二元.>单元分子。进一步对分子的排列、空间取向和分子问距等进行优化使电荷分离态寿命延长至微秒级。这不仅为人工模拟光合作用光能转换的研究提供了大量的科学信息,而且设计合成了一大批性能稳定、结构新颖的多元光敏偶极分子,为深入研究有机光敏染料体系的能量转换和发展有机/纳米半导体复合光