材料科学与工程导论课后习题答案(5)

2018-09-25 22:34

5.分析控制原子配位因素的具体内容和它们对原子的空间排列所产生的影响。(p88 理解) 共价:具体地说,围绕一个原子的共价键数取决于原子的价电子数目,也可称为共价配位。 和原子的有效堆积 共价结合时限制因素是最大配位数,离子键结合时则是最小半径比(达到尽可能接近,又不引发较大斥力的平衡状态),金属由于没有饱和性和明显的方向性,一般都可以达到最密堆积

6.试分析弹性模量E的微观表达式的涵义及其意义。 晶体的弹性模量只代表原子间结合键的刚性,是一个仅反映原子间结合能大小的指标,故它是稳定的材料性质。

7.试对比金刚石与石墨,为何它们的性质如此截然不同?

金刚石是纯共价键晶体,有极高硬度,对电、热的绝缘性很好,具有三维立体结构。石墨却是层状结构,为六方排列的层(或片),尽管石墨层内有强大的共价键,但是层与层之间确实很弱的范德瓦尔斯键,而且层间距大,所以层与层间易相对滑动,可用作润滑材料。

第五章 固体材料中原子的排列与缺陷

1.材料中按原子排列的秩序,共有哪三种情况。分析与聚集态材料对应的情况。 无序、短程有序和长程有序

若材料中仅存在短程有序排列,称其为非晶体或无定形材料,有时也称之为玻璃态或玻璃。 原子具有长程有序排列的材料即为晶体材料。

2.绘示意图说明材料从液体 固体的凝固方式有哪几种。其实际方式的主要影响因素及主要判据是什么?其内在原因是什么?

一种是自然冷却形成晶体,另一种是快速冷却形成非晶体。

冷速;转变成玻璃态的温度Tg和结晶温度Tm的间隔,间隔越小,越容易转变为非晶态 判据:若为长程有序则为晶体,短程有序则为非晶体。

3.三大类材料的结晶倾向如何?原因何在?

金属晶体:面心立方、体心立方、密排六方 这是因为金属键具有无方向性的性质,且每个阵点只有一个原子的缘故

陶瓷材料一般是离子晶体,也有的是共价晶体 适应键型、离子尺寸差别和原子价引起的种种限制

4.晶体的周期性结构如何进行几何描述?晶体结构与空间点阵的相互关系如何? 在探讨晶体结构时,可以把结构设想为在所有方向上都能延伸到无穷远处。原子在空间中分布规律性的基本定义就是空间点阵的基本定义。以几何点代替具体的粒子就是空间点的阵列,如果每一个阵点都具有相同的环境,阵点在三维空间的分布就形成了一个空间点阵 空间点阵是晶体结构的几何抽象 5.三大类材料原子空间排列的主要倾向如何?并简要分析其原因。 6.掌握三种最简单晶体结构的特征(晶胞原子数、致密度、配位数、密排面与密排方向等)。 面心立方 体心立方 密排六方 晶胞原子数 4 2 4 致密度 0.74 0.68 0.74 配位数 12 8 12 密排面 {111} 无 (0001)(0002) 密排方向 <110> <111> <1120>或<100><110> 7.陶瓷材料的结构特性是什么?是如何构造起来的?了解陶瓷材料比较简单的几种晶体结构。

大多数陶瓷材料是金属与非金属元素之间的化合物所构成的多晶固体材料,它们的原子键结合方式是部分或整个是离子键。大多数陶瓷材料都是由离子键构成的离子晶粒,也有由共价键组成的共价晶体。构成离子晶体基本质点之一的非金属元素的原子半径大,它们的原子排列可以是各种不同的晶系,从而组成离子晶体的骨架,金属原子直径小,它藏在非金属原子的间隙之中,这样可形成配位四面体或八面体

金刚石型立方结构、氯化钠和氯化铯结构、晶态氧化硅 8.晶体中存在哪几种不完整性?它们的主要意义何在?

点缺陷:在三维空间中各方向上的尺寸很小,故又称零维缺陷,如空位、间隙原子、杂质原子、色心等。 点缺陷:杂质原子

共价晶体中的置换杂质,通常引起并存的电子缺陷,从而明显地改变材料的导电性。

例如,半导体材料鍺(四价)中含有五价砷或三价镓,在键合轨道上会多出一个自由电子或电子空穴,两类电子缺陷都可以运动,因此导电率增加。 离子晶体也允许置换杂质,但条件是保持电中性。

例如Ca2+置换了两Na+离子,却只占据一个位置。于是,这种杂质创造了另一种称为阳离子空位的缺陷。它对离子晶体的电学性质有影响,加电场时,阳离子空位会反复地与相邻阳离子交换位置而产生电流。当然在这种情况下,导电相当于带正电荷阳离子的运动。

点缺陷:空位与自间隙原子

空位是晶体中没有被占据的原子位置,而自间隙原子是晶体本身的原子占据了间隙位置。 产生空位原因:晶体中原子热振动,一些原子的动能大大超过给定温度下的平均动能而离开原来的位置,造成原位置原子的空缺。温度升高,凝固过程中的塑性变形以及高能粒子辐射

也促进空位的形成。

自间隙原子分为三种:当一个原子离开点阵正常位置(从而产生一个空位)并挤入一个间隙位置时所产生的一对点缺陷称为弗兰克尔缺陷;肖脱基缺陷,即正负离子空位;正负自间隙原子呈中性

点缺陷周围的点阵畸变提高了金属的强度,其他材料的点缺陷直接影响导电等性质。另一方面,点缺陷(如空位)的一个非常重要的特点是它们能够与相邻原子交换位置而运动,这使得在较高温度时可以在固态中进行迅速迁移,即进行扩散。

线缺陷:在三维空间中两个方向尺寸很小,而另一个方向上尺寸较大,故又称一维缺陷,位错就是这种缺陷。从晶体塑性变形角度,当晶体的一部分相对于另一部分在切应力作用下进行相对运动或滑移时,晶体的已滑移部分与未滑移部分的交界线即为位错。 对晶体材料的许多现象与行为,如金属的相变、扩散、再结晶、蠕变与断裂等起着重要作用。

面缺陷:在三维空间中一个方向尺寸很小,另两个方向尺寸较大,故又称二维缺陷,如晶界、亚晶界、相界、层错、孪晶界、有序畴界、生长层、胞壁、磁畴界等。

细化晶粒,增大界面面积是强化金属、陶瓷材料的重要强化手段;界面还往往是相变的发源地,界面与表面又是原子扩散的快速通道;晶界对于透明陶瓷的透光性能有很大应先,晶粒细小,尺寸接近均一、晶界处无杂质是透明陶瓷获得高度透光性的重要条件。

体缺陷:在三维空间中三个方向上尺寸较大,故又称三维缺陷,如沉淀相、夹杂物、空洞等。

9.举例说明材料中原子排列是如何影响材料的行为与性能的。

金属密度大,是因为金属键无方向性,可以达到密排堆积,而聚合物及陶瓷是共价键或离子键,不可以达到密排,且组成它们的原子(C、H、O)较轻,所以密度较小。 在离子和共价晶体中,结合键的性质常对力学性能起着更重要的作用,而原子排列的影响成为次要;金属晶体中,晶体结构因素对力学性能则起着重要作用。 高聚物中链结构对其性能影响?

材料科学与工程导论课后习题答案(5).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:布莱克本学院与蒙特埃立森大学本科教学质量对比

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: