排列典型问题学生版及答案

2020-05-18 16:54

课题:排列 课时:1

目的:巩固排列

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?

例2 三个女生和五个男生排成一排

(1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法?

(4)如果两端不能都排女生,可有多少种不同的排法?

例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种?

(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?

例4 某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.

例5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售

票员搭配方案一共有多少种?

例6 下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?

学 校 1 2 3 1 1 1 专 业 2 2 2

1

例7 7名同学排队照相.

(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?

(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法?

例8 从2、3、4、5、6五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.

例9 a,b,c,d,e,f六人排一列纵队,限定a要排在b的前面(a与b可以相邻,也可以不相邻),求共有几种排法.

例10八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?

例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有( ).

A.A4?A5 B.A3?A4?A5 C.C3?A4?A5 D.A2?A4?A5

例12 由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). A.210 B.300 C.464 D.600

例13 用1,2,3,4,5,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). A.24个 B.30个 C.40个 D.60个

例14用0、1、2、3、4、5共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

例15 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?

2

45345145245

排列答案 典型例题一

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?

分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:

如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.

如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.

解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有A9个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有A4?A8?A8(个). ∴ 没有重复数字的四位偶数有

1123?2296 A9?A4?A8?A8?504?1792个.

解法2:当个位数上排“0”时,同解一有A9个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:A4?(A9?A8)个 ∴ 没有重复数字的四位偶数有

A9?A4?(A9?A8)?504?1792?2296个.

解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 A5?A5?A8个

干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有

11A4?A4?A82个 112313213233112 ∴ 没有重复数字的四位偶数有 A5?A5?A8?A4?A4?A8?2296个.

解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数. 没有重复数字的四位数有A10?A9个.

其中四位奇数有A5(A9?A8)个 ∴ 没有重复数字的四位偶数有

4313333A10?A9?A5(A9?A82)?10?A9?A9?5A9?5A82

3?4A9?5A82

13243112112

3

?36A82?5A82

?41A82

?2296个

说明:这是典型的简单具有限制条件的排列问题,上述四种解法是基本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.

典型例题二

例2 三个女生和五个男生排成一排

(1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法?

解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有A6种不同排法.对于其中的每一种排法,三个女生之间又都有A3对种不同的排法,因此共有A6?A3?4320种不同的排法.

(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有A5种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有A6种方法,因此共有A5?A6?14400种不同的排法. (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有A5种不同的排法,对于其中的任意一种排法,其余六位都有A6种排法,所以共有A5?A6?14400种不同的排法.

解法2:(间接法)3个女生和5个男生排成一排共有A8种不同的排法,从中扣除女生排在首位的A3?A7种排法和女生排在末位的A3?A7种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有A3?A6种不同的排法,所以共有A8?2A3A7?A3A6?14400种不同的排法.

解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有A6种不同的排法,对于其中的任意一种排活,其余5个位置又都有A5种不同的排法,所以共有A6?A5?14400种不同的排法,

(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有

1711A5?A7种不同的排法;如果首位排女生,有A3种排法,这时末位就只能排男生,有A5种排法,首末两端任意排定

5353817262617817626235356363一种情况后,其余6位都有A6种不同的排法,这样可有A3?A5?A6种不同排法.因此共有

4

611617116A5?A7?A3?A5?A6?36000种不同的排法.

解法2:3个女生和5个男生排成一排有A8种排法,从中扣去两端都是女生排法A3?A6种,就能得到两端不都是女生的排法种数.

因此共有A8?A3?A6?36000种不同的排法.

说明:解决排列、组合(下面将学到,由于规律相同,顺便提及,以下遇到也同样处理)应用问题最常用也是最基本的方法是位置分析法和元素分析法.

若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.

若以元素为主,需先满足特殊元素要求再处理其它的元素.

间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快. 捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.

826826典型例题三

例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种?

解:(1)先排歌唱节目有A5种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有A6中方法,所以任两个舞蹈节目不相邻排法有:A5A6=43200.

(2)先排舞蹈节目有A4中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。所以歌唱节目与舞蹈节目间隔排列的排法有:A4A5=2880种方法。

说明:对于“间隔”排列问题,我们往往先排个数较少的元素,再让其余元素插空排列。否则,若先排个数较多的元素,再让其余元素插空排时,往往个数较多的元素有相邻情况。如本题(2)中,若先排歌唱节目有A5,再排舞蹈节目有A6,这样排完之后,其中含有歌唱节目相邻的情况,不符合间隔排列的要求。

455454445典型例题四

例4 某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.

分析与解法1:6六门课总的排法是A6,其中不符合要求的可分为:体育排在第一书有A5种排法,如图中Ⅰ;数学排在最后一节有A5556种排法,如图中Ⅱ;但这两种排法,都包括体育排在第一书数学排在最后一节,如图中Ⅲ,这种情况有A4种排法,因此符合条件的排法应是:

5

4


排列典型问题学生版及答案.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:二年级家委会活动计划3篇

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: