广东工业大学环境工程专业毕业论文 BTF系统处理兼氧池恶臭废气工程设计
内微生物数量大,而且由填料造成的压头损失也较小,可以承受较高的污染负荷,具有很大的缓冲能力,即使中断供给营养物质几天后,系统仍保持很高的脱臭效率。
生物填充法处理臭气具有独特的优点,具有较强的恶臭去除能力、装置简单、能耗低、不受冬季寒冷气候的影响,运行和维护费用很低。主要缺点是占地面积大、操作参数难以控制,生化反应过程需要相对较长的停留时间,大约需要1~6个月。需用大量的水来加湿进气和保持填料的最佳湿度环境,需要处置产生的大量渗沥液和脱落剥离的老化生物残体。另外对于某些成分复杂和高浓度的恶臭处理有局限性,使得其应用受到一定的限制。尽管如此,在实际中生物填充脱臭法仍得到广泛地应用。
如何简化操作控制手段成为目前生物脱臭研究中的重点。近年来,生物填充脱臭法被越来越广泛地用于污水,污泥处理和垃圾处置设施的恶臭控制,但是发展比较还是缓慢,其机理的阐述也比较暧昧不清,有许多方面需要更进一步的理论研究和实践经验。
4、新脱臭工艺和技术的发展
实际的恶臭处理中,单一的方法往往不能完全去除臭气,特别是对成分比较复杂的恶臭气体,人们常常采用联合脱臭法。比如1985年,日本三菱重工业株式会社公布的吸附—氧化法脱除城市污水处理场和粪便处理场臭气的技术。恶臭气体通过吸附塔进行吸附处理后,未被吸附的臭气再经臭氧氧化而达到除臭的目的,能将臭气强度降至l级以下。
另外在组合现有脱臭技术的同时,世界各国也寻求新脱臭技术的开发研究,比如高能离子净化系统和新型脱臭剂的研究。高能离子净化是瑞典的高新技术,开始在欧洲诸国应用于医院、办公楼、公众大厅等以空气净化。它能有效地清除空气中的细菌、可吸入颗粒物、硫化合物等有害物质。它的工作原理是利用离子发生装置发射的高能正、负离子与有机挥发性气体分子接触,并将其分解成二氧化碳和水,对硫化氢、氨也同样具有分解作用,还可以有效地破坏细菌生存的环境,降低细菌浓度或消除。高能离子脱臭技术在法国、英国、苏格兰、瑞典等国的应用实例很多,正逐步应用于污水处理厂和污水提升泵房的脱臭方面。
新型脱臭剂是针对近几年来小规模污染源逐渐增多的严峻状况而开发的一种可以有效脱除臭气,并且安装简单的新技术,特别是微生物除臭剂的研究开发将成为比较前沿的课题,将具有很大的工业化应用空间。日本比较重视这一方面的研究,
12
广东工业大学环境工程专业毕业论文 BTF系统处理兼氧池恶臭废气工程设计
每年都有许多关于脱臭剂的专利问世。如:1984年日本公开特许公报59—32937称L—抗坏血酸—亚铁脱臭剂对氨、甲硫醇、硫化氢有较好的脱臭效果。微生物除臭剂是根据微生物降解原理将筛选到的高效脱臭微生物固定在载体上,制成一定的剂型,恶臭气体通过时便达到除臭的效果。日本学者大野胜史从土壤中分离过滤得到枯草芽孢杆菌,该菌对油脂臭气有较好的抑制效果,现已制成除臭剂产品。栗田工业与东京工业大学开发出用泥炭作载体的亚硝化单细胞菌等微生物除臭剂,将此除臭剂填充于反应塔中,用以去除硫化氢和氨气等恶臭成分,在处理低浓度臭气时,可长时间保持无臭状态。日本的河须崎敏明、大越芳男等人将污水厂活性污泥在30—40 ℃下干燥后粉碎,制成除臭剂,填充进15cm直径,60cm高的柱管中用以吸收处理含硫化氢、硫醇的恶臭气体,取得了很好的效果。微生物除臭剂价格低廉,装置简单,效果稳定,操作方便,与以往药液、活性炭法相比较,具有投资省、维护管理费用低的特点,在除臭剂市场上很有潜力。
5、技术展望
目前,严格执行恶臭污染物排放标准,加强对恶臭的监测与治理是污水处理厂今后的发展要求。究竞选择何种处理方法合适,则要根据恶臭物质的性质、浓度、处理量及来源等因素决定,笔者认为湿式吸收氧化法和生物过滤法两种技术是发展和应用的方向。湿式吸收氧化法具有处理气量大,浓度高,操作稳定,效率高和占地面积小等优点,将成为主流和首选技术。在占地面积不受局限的情况下,针对中,低浓度的恶臭气流,生物过滤法同样是一个很好的选择。但是无论选用哪一种技术方案,都必须由专业人员对整个项目的恶臭的来源,特性和现场的具体情况做全面,科学的调查,研究和分析,才能做出科学,合理的决策[5]。 1.4恶臭治理技术的比较和选取
在恶臭废气处理的主要工艺中,目前主要采用的物理、化学等方法的工艺或设备都较复杂,运行费用也较高;用于处理某些恶臭废气时,效果仍不甚理想。生物脱臭法通过不断改进完善,克服了前述物理、化学方法的缺陷,并显示出处理效率较高、适应性较广、工艺较简单以及费用较省等优点,成为治理恶臭的一个重要发展方向。
恶臭废气的微生物处理早在1957年就在美国获得专利,20世纪80年代在德国、日本、荷兰等国家有相当数量的工业规模的各类生物净化装置投入运行,至1990年
13
广东工业大学环境工程专业毕业论文 BTF系统处理兼氧池恶臭废气工程设计
在德国仅生物滤床便有500余座。废气生物反应器处理结果表明,对于许多一般性的空气污染物的控制可达到90%以上。
我国在20世纪80年代末、90年代初开始恶臭处理的实验室研究,并有一些研究报道。今后,随着生物脱臭技术及其各种相关研究的发展,以及各国对恶臭物质更加严格的限制,生物脱臭法将会越来越普及。 1.4.1恶臭气体的生物处理特点
恶臭废气生物处理技术是一项新兴的有效控制VOCs等污染物的技术,近年来有很大的发展,特别适用于处理大体积、低浓度的废气,以替代设备费用昂贵、运行维护困难、有二次污染等缺陷的空气污染控制技术。其可用于控制化工、制药、电镀、喷漆、印刷等行业产生的有害污染物(hazardous air pollutants,HAPs)以及废水处理厂、堆肥厂、垃圾填埋厂产生的恶臭(odour)等。同传统的物化处理方法相比,生物法具有许多其他方法无可比拟的优点[6]。
1、生物脱臭法可避免或减少二次污染。一般将硫系、碳系、氮系等各种恶臭成分,以及苯酚、氰等有毒成分氧化和分解成CO2、H2O、H2SO4等物质。生物处理的产物是微生物,很容易,而化学氧化法会产生氯和含氯产物,加热法会产生氮氧化物等污染物,还需进一步处理。
2、生物脱臭法投资少,能耗低,运行费用低。生物脱臭是以臭成分作为生物体内的能源,只要使微生物与恶臭成分相接触,完成氧化和分解过程。在常温常压下进行,处理的能量来自生物利用VOCs成分本身产生的能量,一般不需要加热;不需投加额外的化学品;消耗的动力只是污染气体进入处理系统时所耗的能量(正压送风或负压引风)。与物理化学法相比,不仅可省能源和资源,而且处理成本也比较低廉。荷兰建造的生物滤其总成本是每处理1000m3废气,费用为0.25~1.25美元(1987年价格)。而采用吸附、吸收、氧化等传统物化方法其总成是每处理1000m废气,费用为2.5~10美元[7]。
3、生物脱臭法的脱臭效率高。只要控制适当的负荷条件与气接触条件,就能达到极高的脱臭效率,对于一般的空气污染物去除效率超过90%。
4、生物脱臭装置较为简单,只需设置诸如生物过滤器、曝气槽、捕集器等装置。 5、生物脱臭法生成的剩余污泥少。这是因为活性污泥法脱臭消化,其剩余污泥较少。
3
14
广东工业大学环境工程专业毕业论文 BTF系统处理兼氧池恶臭废气工程设计
1.4.2恶臭气体物的生物转化
生物脱臭法是利用微生物的生物化学作用,使污染物分解,转化为无害或少害的物质。微生物利用有机物作为其生长繁殖所需的基质,通过不同的转化途径将大分子或结构复杂的有机物经异化作用最终氧化分解为简单的水、二氧化碳等无机物,同时经同化作用并利用异化作用过程中产生的能量,使微生物的生物体得到增长繁殖,为进一步发挥其对有机物的处理能力创造有利的条件。污染物去除的实质是有机底物作为营养物质被微生物吸收、代谢及利用。这一过程是比较复杂的,它由物理、化学、物理化学以及生物化学反应所组成。生物脱臭可以用式(2-1)表达。
恶臭物质+O2 细胞代谢物+CO2+H2O (2-1) 恶臭污染物的转化过程可用图2-1表示。
恶臭气体成分不同,其分解产物不同,不同种类的微生物,分解代谢的产物也不一样。对于不含氮的有机物质如苯酚、羧酸、甲醛等,其最终产物为二氧化碳和水;对于硫类恶臭成分,在好氧条件下被氧化分解为硫酸根离子和硫;对于像胺类这样的含氮恶臭物质经氨化作用放出NH3,可被亚硝化细菌氧化为亚硝酸根离子,再进一步被硝化细菌氧化为硝酸根离子。 1.4.3恶臭气体物生物去除过程
臭气物质首先溶解在水中,而后被微生物吸收,作为微生物营养物质被分解、利用,从而除去污染物。
与净化有机废气一样,生物膜法净化臭气时,由于有机污染物与生物发生了生
15
广东工业大学环境工程专业毕业论文 BTF系统处理兼氧池恶臭废气工程设计
化反应,已不同于单纯的物理吸收过程。荷兰学者在1986年提出的双膜—生物膜理论能较好地说明生物膜法净化臭气的机理。该理论认为,生物膜法净化气体可分为三个步骤。
1、恶臭气体的溶解过程。废气与水或固相表面的水膜接触,污染物溶于水中成为液相中的分子或离子,即恶臭物质由气相转移到液相,这一过程是物理过程,遵循亨利定律[见式(2—2)]。
Pi=HXi (2—2)
式中 Pi——可溶气体在气相中的平衡分压,MPa; H——亨利系数,MPa;
Xi——可溶气体在液相中的摩尔分数。
2、恶臭物质的吸附、吸收过程。水溶液中恶臭成分被微生物吸附、吸收,恶臭成分从水中转移至微生物体内。作为吸收剂的水被再生复原,继而再用以溶解新的废气成分。被吸附的有机物经过生物转化,即通过微生物胞外酶对不溶性和胶体状有机物的溶解作用后才能相继地被微生物摄人体内。如淀粉、蛋白质等大分子有机物在微生物细胞外酶(水解酶)的作用下,被水解为小分子后再进入细胞体内。由此可见,当以污泥或膜形态存在的微生物表面一旦通过吸附而被有机物覆盖后,其进一步吸附的作用将受到限制,因而需要通过污泥或膜的表面更新或不断补充具有吸附能力的微生物菌胶团,才能保证此过程的顺利进行。
3、恶臭物质的生物降解过程。进入微生物细胞的恶臭成分作为微生物生命活动的能源或养分被分解和利用,从而使污染物得以去除。烃类和其他有机物成分被氧化分解为C02和H20,含硫还原性成分被氧化为S、SO4;含氮成分被氧化分解成NH4、N02-和N03-等。具体转化过程如下。
进入微生物细胞体内的有机物,在各种细胞内酶(如脱氢酶、氧化酶等)的催化作用下,微生物对其进行氧化分解,同时进行合成代谢产生新的微生物细胞。一部分有机物通过氧化分解最终转化为H2O和CO2等稳定的无机物质;并从中获取合成新细胞物质(原生质)所需要的能量。此过程可用式(2-3)表示[8]。
CxHyOz+(x+y/4-z/2)O2 酶 xCO2+(y/2)H2O+△H (2-3) 与此同时,微生物利用另一部分有机物及分解代谢过程中所产生的能量进行合成代谢以形成新的细胞物质。此过程可用式(2—4)表示。
nCxHyOz + nNH3+ n(x+y/4-z/2-5)O2 酶 2-+
16