2019年广东省汕头市普通高中高三教学质量测试试题理科数学试卷(

2020-06-21 15:15

高考数学精品复习资料

2019.5

汕头市普通高中高三教学质量测评试题(二) 理 科 数 学 一、选择题

1. 算数z满足(z?i)i?2?i,则z?

A.?1?i B.1?i C.?1?3i D.1?2i

2.已知集合

右边韦恩图中阴影部分表示的集合为 A.

M?x|y?3?x2,N??x|?3?x?1???,且M,N都是全集U的子集,则

?x|?3?x?1?

B.

?x|?3?x?1? C.

?x|?3?x??3?

x|1?x?3??D.

13. 执行右边的框图,若输出的结果为2,则输入的实数x的值是

213A.4 B.2 C.2 D.2

4.如图所示,图中曲线方程为y?x?1,用定积分表达围成封闭图形(阴影部分)的面积是

2

5.给出平面区域G,如图所示,其中A(5,3),B(2,1),C(1,5),若使目标函数z?ax?y(a?0)取得最小值的最优解有无穷多个,则a的值为

12A.2 B.3 C.2 D.4

6.某三棱锥的三视图如图所示,该三棱锥的体积是

205414050A.3 B.3 C.3 D.6

7.已知数列

?an?,?bn?都是公差为

,则数列

1的等差数列,其首项分别为

a1,b且

a1?b1?5,a1?b1,a1,b2?N*?bn?的前10项和等于

A.55 B.70 C.85 D.100

2013(x?1)8.关于二项式有下列命题:

6C2013x2007(1)该二项展开式中非常数项的系数和是1;(2)该二项展开式中第六项为;

(3)该二项展开式中系数最大的项是第1007项;(4)当x?2014时,(x?1)的余数是20xx。

其中正确命题有

2013除以20xx

A.1个 B.2个 C.3个 D.4个 二、填空题

(一)必做题(9-13题) 9.某学校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程序的破坏,但可见部分如下图,据此可以了解分数在[50,60)的频率为 ,并且推算全班人数为 。

10. 下图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位下降2米后水面宽 米。

11.在?ABC,角A,B,C的对边分别为a,b,c,且a?2,c?3,A?45?,则角

C? 。

12.已知正方形ABCD的边长为1,点E是AB边上的点,则DE?CB的值为 。 13.若?x?R,使|x?a|?|x?1|?4成立,则实数a的取值范围是 。 (二)选做题(14-15题,考生只能从中选做一题)

14.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分

???x?2?cosC1:???C:??1??y?5?sin别在曲线(为参数)和曲线2上,则|AB|的最大值

为 。

15.如图,已知Rt?ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC边为直径与

AB交于点D,则三角形ACD的面积为 。

三、解答题

f(x)?Asin(?x??)(A,??0,|?|?16.已知函数

?)2的图像与y轴交于(0,32),它在y(m??2右侧的第一个最高点和第一个最低点的坐标分别为(m,6)和(1)求函数f(x)的解析式及m的值; (2)若锐角?满足tan??22,求f(?)。

,?6)。

17.高三(1)班和高三(2)班各已选出3名学生组成代表队,进行乒乓球对抗赛,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不得参加两盘单打比赛;③先胜两盘的队获胜,比赛结束。已知每盘比赛双方胜的概

1率均为2。

(1)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容? (2)高三(1)班代表队连胜两盘的概率为多少?

(3)设高三(1)班代表队获胜的盘数为?,求?的分布列和期望。

18.已知动点P(x,y)与两个定点M(?1,0),N(1,0)的连线的斜率之积等于常数?(??0) (1)求动点P的轨迹C的方程;

(2)试根据?的取值情况讨论轨迹C的形状;

E(?3,0),F(3,0),(3)当??2时,对于平面上的定点试探究轨迹C上是否存在点P,

使得?EPF?120?,若存在,求出点P的坐标;若不存在,说明理由。

19.如图,在梯形ABCD中AB//CD,AD?CD?CB?a,?ABC?60?,平面ACFE?平面ABCD,四边形ACFE是矩形,AE?a,点M在线段EF上。 (1)求证:BC?平面ACFE;

(2)当EM为何值时,AM//平面BDF?证明你的结论; (3)求二面角E?EF?D的余弦值。

an?k?N*,a2k?1,a2k,a2k?1a1?0?20.在数列中,,且对任意成等差数列,其公差为2k。

(1)证明:

a4,a5,a6成等比数列; (2)求数列

?an?的通项公式;

2232Tn???a2a3(3)记n23??2n?Tn?2(n?2)an,证明:2


2019年广东省汕头市普通高中高三教学质量测试试题理科数学试卷(.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:人教版八年级美术上册教案=

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: