聚类分析在证券市场分析中的应用 - 图文

2020-06-28 12:14

聚类分析在证券市场分析中的应用

摘要:聚类分析是一种非常常用的数据挖掘技术,它在证券投资分析方面有很大的研究和发掘潜能与空间。投资者在实践中可以将聚类分析应用于投资分析中,这样便可对股票的收益、成长、行业因素等方面进行全面的分析与考察,建立全面、合理的评价体系。研究者也可从多方面多视角为市场的营销战略与策略提供非常科学的参考体系,并将其运用于整个市场分析。总之,将聚类分析引入到证券市场的分析中来,为各方面都提供了很好的需求。本文将选取甘肃、宁夏、青海在沪深证券所上市的企业为例,具体分析聚类分析在证券市场分析中的应用。

关键词:聚类分析;投资分析;证券市场;SPSS软件;

Analysis of the application of clustering analysis in the stock

market

Abstract: Clustering analysis is a very commonly used data mining techniques, it has a lot of research in securities investment analysis and the potential and space. Investors clustering analysis can be applied in practice in investment analysis, it can be for stock returns, growth, industry factors and so on to conduct a comprehensive analysis and investigation, a comprehensive and reasonable evaluation system. Researchers can also be used in many ways more perspective to the market marketing strategy and strategy offers a scientific reference system, and applied it to the whole market analysis. In a word, the clustering analysis is introduced into the stock market analysis, provides a good demand for everything. This article will select gansu, ningxia, qinghai, the listed companies in Shanghai and shenzhen securities as an example, the concrete application of clustering analysis in the stock market analysis.

Key words: clustering analysis; investment analysis; stock market;spss software;

目录

第一章 引言 ······························································································································· 1 1.1 研究背景 ······················································································································ 1 1.2 聚类分析法 ·················································································································· 1 1.3 研究意义与方案 ·········································································································· 2 第二章 聚类分析 ······················································································································· 2 2.1 聚类分析的原理概述 ·································································································· 2 2.2 聚类分析的流程 ·········································································································· 3 2.3聚类分析的方法 ··········································································································· 4 2.3.1 系统聚类法类间距离的度量················································································ 5 2.3.2 系统聚类法类的个数确定···················································································· 6 第三章 聚类分析在证券市场分析中的应用 ········································································· 7 3.1 聚类分析指标体系的建立 ·························································································· 7 3.1.1证券行业分析及指标的选择················································································· 7 3.1.2指标评价体系········································································································· 7 3.2 实证研究 ···················································································································· 10 3.2.1 样本数据标准化·································································································· 11 3.2.2 用软件对数据样本进行聚类·············································································· 12 3.2.3 聚类结果·············································································································· 21 3.2.4 结果验证·············································································································· 24 3.2.5 结果分析·············································································································· 26 总 结 ··································································································································· 28 致 谢 ··································································································································· 28 参考文献 ··································································································································· 28

第一章 引言

1.1 研究背景

我国进入改革开放以来,国内市场经济有着快速、健康的发展条件,证券业也从20世纪90年代开始迅速发展。就像不能否定我国经济发展所取得的成就一样,也不能否定我国证券业在这些年的发展。由于经济的发展,国民收入快速的增多,于是大家纷纷开始将更多的资金投入到金融市场中来,而证券市场又作为非常重要的金融市场,因此越来越多的人们将投资的目标锁定在证券市场。不过,事实也说明了问题,证券市场中,尤其是投资股票在过去的二十几年中,为很多投资者带来了客观的收益。但是,也并不是说证券业的发展只带来了积极的成就,在看到这些成就的同时也应该关注到目前还可能存在的一些不足。活跃在我国证券市场中的有一部分人缺乏投资证券的知识和经验,他们往往只关注于短线的操作,喜欢投机,同时各种媒体也不加以正确的引导,使得投机的氛围在这些人当中越来越浓。证券市场?1?应该有起到投资与融资、优化资源配置的作用。而这些问题是与这些作用想违背的。

现在,很多投资者都知道,证券市场中的股票市场是风云多变的,股价一直以来也是涨跌不定。有位著名的经济学家说过一句话,“如果股市只有操作,没有回报,那就是常说的一种零和博弈,钱只是在不同的人之间转手,并没有创造出更多的财富和价值。”因此,投入于证券市场的资金只有转移到真正能产生更多财富的企业当中,才能创造出更多财富,证券市场也才起到一定的作用。因此,正确引导那些投资者,认真的分析与研究市场和企业的发展前景和盈利能力,要有此心也要有此能。

聚类分析就是一个很好且实用的研究方法,它能客观正确的研究与分析证券市场。

1.2 聚类分析法

回归分析、判别分析与聚类分析?2?一起称为多元统计分析中的三大分析方法。而聚类分析是建立在某种优化的意义下,按照研究的对象的共性分类,他的基本目标是发现样品的自然分组方法,从而分辨出在某一些共性和特征上相似或相同的事物,并把他们按照这个共性进行划分成若干类别。聚类分析是起源于分类学的,很久以前,人们都没有专门可以利用的数学工具进行定性定量分类,于是只有依靠大家长期以来的经验来进行。伴随着科技的进步,人们对分类的要求也跟着提高,再想依靠传统的经验来分类远达不到要求,于是只有将数学工具引入到了分类中,随着人们科学技术的发展,逐渐便形成了聚类分析。聚类分析的原则是同一类中的个体要具有一定的相

1

似性,而不同类别的个体之间要具有较大的差异。它的优点和特征在于分类的结果是非常直观和清晰的,它的图标是能够很明确的表现其分类的结果,能够综合利用多个变量进行分类,它进行分类所得到的结果比以前传统的方法更全面、合理。

1.3 研究意义与方案

聚类分析是一种非常有效的、可以从多角度的为证券投资指导方向的分析方法。这种方法在很多领域都有了广泛的应用,但在证券投资与分析方面还有很大的研究和挖掘空间?3?。我国的证券业,尤其是股票市场虽然一直处于一个不稳定的状态,但是毕竟还处于快速发展与健全的时期,相信我们所期待的规范时期即将到来。在现有的证券分析研究方案基础上,通过聚类分析的方法?4?,引入反映公司收益性、成长性、盈利能力等指标运用科学的手段证实它在证券市场分析中的作用,以期能为更多的投资者提供一种全面、客观的分析证券市场的方法并得到大家的认可。同时不断的引导和灌输投资者正确的理念和知识,并从中得到有意义的指导,让市场也可以更快更好的发展。

本篇论文首先将从研究的背景出发,说明此论文研究的意义与可行性,引导出所需要用到的研究方法——聚类分析法。然后将聚类分析的不同方法和步骤做进一步的解释。最后将聚类分析在市场具体细分中的应用做详细的介绍,并通过选取的45家上市企业为实例,运用SPSS软件进行检验分析。全文通过这三个部分全面的对聚类分析在证券市场分析中的作用做一个深入的分析和总结。

第二章 聚类分析

2.1 聚类分析的原理概述

在聚类分析具体应用到证券研究中的时候,我们可以将不同的证券用每股收益、每股净资产、市盈率等财务上的指标加以表现?5?。那么用数学符号就可以将证券研究表示如下:

Yi??Yi1,Yi2,?,YiN? ?i?1,2,?M;j?1,2?N?

其中Yi表示所研究的第i个对象,Yij表示要研究的第i个对象的第j个属性。同时可以直观的将研究对象看作是M维空间上的一个点,而聚类分析所要做的就是将M维空间上的N个点加以分类而已。这个分类标准就是距离。距离是作为样品之间的相似程

2

度的度量,是聚类分析的基础。而我们可以用以下几类距离加以选择:绝对值距离、欧氏距离、马氏距离、明科夫斯基距离等。 (1)绝对值距离

dij??Y?Yk?1ikmjk (1)

而绝对值是以两个研究对象不相关为dij表示的是研究的对象i到研究对象j的距离,

前提条件的,当这个条件不满足时,其聚类的结果应该得到怀疑。 (2)欧氏距离

2 dij???mYik?Yjk????k?1?1/2 (2)

(3)马氏距离

dij?m?? ?Y?Y???Y?Y? (3)

T1ijij1其中Yi和Yj分别表示所研究的对象i和j的m个属性所组成的向量,?的协方差阵:

1m?Yi?Y?m?1i?1是聚类变量

?(4)明科夫斯基距离

1???T1mYi?Y,其中Y??Yi

mi?1?q??m dij?q????pkYik?Yjk??k?1???1/q (4)

其中q?1,当q?2时即为欧氏距离。Pk是表示权重,由于其选择的主观性、任意性经常对其丢弃,忽视了研究变量的重要性差异因此研究结果不免偏颇。

本文的距离选择了欧氏平方距离,因为后文选取的样本数据是45家企业的股票,它的分类是未知的。而马氏距离适用于随机变量的样本点,并用于已知变量类别的情况。明科夫斯基距离又是一种范式距离,欧氏距离是它的一种形式。但是,又鉴于后文所选取的指标有净利润增长率、资产负债率、基本每股收益、每股净资产等指标,他们都为连续变量,因此选择欧氏平方距离(SPSS软件中为“平方Euclidean距离”)最为合适。由公式(2)可知,欧氏平方距离为:

2m2 dij ???k?1Yik?Yjk? (5)????2.2 聚类分析的流程

在实际的研究与分析中,运用聚类分析来研究证券市场应当按照一定的顺序与步骤来进行。以股票为例,首先我们得对要研究的股票建立一个综合的评价指标体系,如主营收入增长率、净利润增长率等客观指标。然后根据所了解的各类股票群的一些特征和状况划分出一个分析的范围,再对范围内的股票样本进行数据的收集。对收集

3


聚类分析在证券市场分析中的应用 - 图文.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:九年级第一单元 复习课学案

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: