四年级趣味数学教案.(2)

2020-10-17 10:25

第五课 神秘的7

人说:七是一个轮回。想想的确如此:一周七天、世界有七大洲、古时人死后每七天为一祭直到七七四十九天之后算完毕……“7”果真是个很神秘的数字,神秘得让人不由得想去探寻一番。 七天造人

“7”实在是个异常神秘的数字。如果你看过圣经的旧约,那么你一定知道:上帝用七天造亚当,取出亚当的第七根肋骨造了夏娃。撒旦的原身是有七个头的火龙,共有七名堕落天使被称为撒旦。到16世纪后,基督教更直接用撒旦的七个恶魔的形象来代表七种罪恶,也就是我们平常说的七宗罪,分别是傲慢、嫉妒、暴怒、懒惰、贪婪、饕餮以及贪欲。相对于七宗罪,还有七德行,分别是谦卑、温纯、善施、贞洁、适度、热心及慷慨。美国导演曾拍摄过一部电影《七宗罪》,在电影里,七罪、七罚、七次下雨、故事发生在七天,甚至结局也由罪犯定在第七天的下午7时,七无处不在。不过这样的探究也无法说得清楚,为什么是七宗罪而不是八宗罪,看来也只有上帝他老人家知道了。

巧合的是,佛教也对七这个数字十分偏爱。我们常说“救人一命胜造七级浮屠”,这里面浮屠是梵语Stupa的略音,即佛塔,这塔原来是用来埋葬圣贤的身骨或藏佛经的,造塔的功德很大。但是为什么这浮屠要说“七级”,而不说“六级”、“八级”呢?确实难以说得清楚。 七大洲

地球上有七大洲四大洋,估计只要上过小学地理的人都知道。当上到中学地理的时候,我们又知道,这七大洲原来是并在一起的,后来因为地壳运动,慢慢分裂成七块。如果注意一下世界地图,就会发现南美洲的东海岸与非洲的西海岸是彼此吻合的,好像是一块大陆分裂后、两边的陆地越漂越远。奥地利人魏格纳在1915年出版的《海陆的起源》一书中提出了大陆漂移学说,用科学来解释这个现像。他认为,全世界实际上只有一块大陆,称泛大陆。由于地下的硅铝层比硅镁层轻,就像大冰山浮在水面上一样,又因为地球由西向东自转,南、北美洲相对非洲大陆是后退的,而印度和澳大利亚则向东漂移了。经过漫长时间的演化,形成了现在的七大洲四大洋。至于为什么会正好分成七个大洲呢?嗯……也许是巧合吧。 世界七大奇迹

说到世界七大奇迹,可能是最让中国人伤心的事,秦始皇兵马俑只是被后人成为“世界第八奇迹”,万里长城如此宏伟的建筑居然连奇迹的边都没擦上。这世界七大奇迹究竟是怎么来的呢,据考证,在古代尼罗河流域和底格里斯一幼发拉底两河流域是人类早期文明的发祥地,这里曾经出现过诸多宏伟的建筑和高超的建筑作品。相传在很久很久以前,有一位叫菲伦的拜占庭科学家将这些古迹赞为“世界七大奇迹”,分别为:亚历山大灯塔、罗得岛太阳神巨像、哈利卡纳苏斯的摩索拉斯陵墓、奥林匹亚的宙斯神像、以弗所的阿尔忒弥斯神庙、巴比伦

的空中花园、埃及金字塔。至于为什么只评选了这七个建筑呢,已经没有办法考证了,不过有传说表明菲伦是个超级大路痴,经常在旅行中迷路,多次依靠北斗七星确定方位,后来为了纪念这七颗星星,就把迷路中发现的七个建筑物冠以“七大奇迹”之称。

七窍(可找出此段相声片段:视频、录音皆可)

马季老师去了,但是留下来一段脍炙人口的佳作。那可是经典的群口相声,说的是一个相声演员的口、耳、眼、鼻突然成了人形,纷纷走上舞台争抢功劳的故事。这段子取名《五官争功》,可其中的主角加起来一共得有7孔,俗称七窍。《庄子》曰:“人皆有七窍,以食、听、视、息。”相声里它们相互抬杠闹独立,结果成了闹剧。人之七窍,谁也离不开谁,现在我们就好好团结它们来发现那些我们离不开的7,这几个7天生自然,没有为什么。 七天

首当其冲的是鼻子,因为它老顶在最前面。七窍当中,两个鼻孔打出生以来就没休息过,除了练就水中芭蕾花样游泳的技术,才能用个鼻夹,强制鼻子暂时休息。所以鼻子时常抱怨,要是它也有星期天就好了。一周七天轮回,对它来说可望而不可及。

由此,我们想到了一周七天。现在世界各国通用一星期七天的制度最早由君士坦丁大帝(ConstantinetheGreat)制定。他在公元321年3月7日正式宣布7天为一周,随后一直沿用至今。一周七天的英文名称是Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday。这些个名称虽然也经历了不同的变迁,但依然具有惟一的共同点——它们都是神的名字。

这些名称最早起源于古巴比伦(Babylon)。公元前7至6世纪,巴比伦人便有了星期制。他们把一个月分为4周,每周有7天,即一个星期。古巴比伦人建造七星坛祭祀星神。七星坛分7层,每层有一个星神,从上到下依此为日、月、火、水、木、金、土7个神。也就是Sun\'s-day(太阳神日),Moon\'s-day(月亮神日),Mars\'s-day(火星神日),Mercury\'s-day(水星神日),Jupiter\'s-day(木星神日),Venus\'-day(金星神日),Saturn\'s-day(土星神日)。7神每周各主管一天,因此每天祭祀一个神,每天都以一个神来命名。 七音

接下来,用耳朵听听,高高低低的声音统统被归纳在1-7这七个数字当中。虽然也有五线谱,但简谱自从传入了我国,立即得到了广泛的流传。从最初的宫、商、角、徵、羽的音阶发展成为与国际接轨的7音阶。我们就该带着耳朵飞向北京,去听听“高音C之王”帕瓦罗蒂的“告别舞台世界巡演”。那个“高音C”,是从人们日常说话音高所处的“中央C”开始,向上升高两个八度的C音,其实也就是1上面加两点。这已经是人类发声的极限音域,况且还要在这个音高上唱出通透、漂亮的音色,简直是太难了。

1967年,帕瓦罗蒂和著名女高音歌唱家萨瑟兰在英国伦敦科文特花园皇家歌剧院第一次演出《军中女郎》。在排练时,萨瑟兰和她担任指挥的丈夫波宁吉一起竭力怂恿帕瓦罗蒂用原调演唱,帕瓦罗蒂虽然觉得这是疯狂的举动,但还是答应试一下。不过他一再强调,如果唱不出来就移到B调演唱。结果,帕瓦罗蒂平生第一次被自己的嗓音吓了一跳,他完美地唱出了9个高音C,并且通畅、圆润,极富艺术感染力!担任伴奏的乐队演奏员们都激动得全体起立鼓掌,那次演出获得了空前的成功。1972年,帕瓦罗蒂和萨瑟兰一起在美国纽约大都会歌剧院再次演唱了《军中女郎》,这次演出引起了世界性的巨大轰动,评论界极力渲染那9个神奇的“HighC”,自此,人们就把“高音C之王”的桂冠戴在了帕瓦罗蒂的头上。 pH7

然后轮到嘴巴了。除了发声之外,嘴巴还能吃东西尝味道。为了准确度量味道,人们创造了一个和7紧密结合的味道标准——PH值。先来科普一下,PH是拉丁语“Pondushydrogenii”一词的缩写(Pondus=压强hydrogenium=氢),所以也叫称氢离子浓度负对数。它是溶液中氢离子(H)活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。通常pH值是一个介于0和14之间的数,当pH<7时溶液呈酸性,当pH>7时溶液呈碱性,当pH=7时溶液呈中性。很奇怪,7作为酸碱分界线,可是这个7不是凭空指定的,因为理想纯水的氢离子浓度的负对数正好是7。可以想像么?我们的油盐酱醋,我们的烹饪调味,原来都是在千万分之一数量级上毫厘之间的变化。这足以证明,嘴巴相比较耳朵鼻子要挑剔得多。 素数7

就剩眼睛了。最宝贵的眼睛,如果让你只能保留七窍中的一样,你会选择眼睛的吧?可今天我们不是带着眼睛看花花世界的,要去发现的是最朴素简单的数字7。还记得上世纪80年代,那个会跳舞的777录像机广告么?在数学家的眼里,这个带着锐角桀骜不驯也不对称的家伙真的是会跳舞的,而且还最擅长旋转的华尔兹。

作为素数,7创造了许多数字游戏,比如7的倒数,0.142857循环,已经成了众所周知的好玩的数字。因为拿142857乘以1-6的任何数字,所得结果依然是由142857组合起来的数字,就像6个小人轮换着转圈一样。严谨的数学家给这样的数字命名为循环数。100以内能产生这样的数字还有8个。比如1/17=0.0588235294117647循环,你自己试试看,乘以1-16的任何数字它也会旋转着跳舞的。

该闻该听该尝该看的都有了,我们的发现7之旅也圆满了。所有这些7都是没有原因的原本就存在那里,我们人类只是发现了它们。所有这些7都经不起问为什么,比如为什么一周要七天呢?事实上,苏联就曾经把一周定为5天,可是因为种种不便而夭折。天文学上一个恒星周甚至可以定义300地球年。为什么音阶是7个呢?为什么pH中性是7呢?很多理性的标准答案还等待着我们探索,但冥冥中还是有道理的。

注:一定要给出相应的图片资料。

第六课 平行与相交

一、平行、垂直

1、突出两条直线的关系为什么要在“同一平面内”讨论。 在同一平面内的两条直线又有什么关系:平行、相交 斑马线:《补充读本》P23

2、建筑中确定平行与垂直的方法:书P47,配《补充读本》P23“铅垂线与水平线”

3、画平行线的方法: 1)学生自己介绍

2)动手尝试有多少种,如果定距离又有多少种? 3)讨论哪些方法比较好 4、画垂线的方法:(同上)

注:可一把直尺;可直尺和三角尺;可量角器。 例如量角器:

1)沿量角器的直边任意画一条直线a;

2)将量角器旋转90度,使90度线与已画的直线a重合; 3)再沿量角器直边画一条直线,所画的直线就是直线a的垂线; 4)标上垂直符号。

(教师可多用练习上的习题帮助学生多操作多练习,但以辅导为主。) 二、数学趣闻

【斐波拉契的兔子】

从前,有一个穷光棍,平时只知好吃懒做,不肯踏踏实实做事情,还经常想入非非做发财梦。一天,他在路边捡到一个鸡蛋,他非常高兴,捧着鸡蛋就在脑子里就盘算开了:“我借别人的母鸡把这个蛋孵成小鸡,等小鸡长大了,就可以生蛋,我再把生的蛋孵成鸡,这些鸡又可以生更多的蛋,蛋又可变成更多的鸡……过不了几年,我就可以把蛋和鸡去换许多钱,然后可以盖新房,还可以娶个漂亮媳妇,生儿育女……”他越想越高兴,不禁得意忘形手舞足蹈,忽听“啪”的一声,鸡蛋掉在地上,碎了!懒汉看着摔碎了的鸡蛋,放声痛哭:“哎呀,我的宝贝!我的房子呀!……”

上面这则笑话流传已久,对我们很有教育意义,然而恐怕谁都没有认真计算过:如果鸡蛋没有打碎,几年后这个懒汉究竟有多少只鸡,多少个蛋呢?不过,公元1202年,一位意大利比萨的商人斐波拉契(Fibonacci,约1170-1250?)在他的《算盘全书》(这里的“算盘”指的是计算用沙盘)中提出过一个“养兔问题”,却被无数人算过。这道题说的是:

某人买回一对小兔,一个月后小兔长成大兔。再过一个月,大兔生了一对小兔,以后,每对大兔每月都生一对小兔,小兔一个月后长成大兔。如此下去,问一年后此人共有多少对兔子?

你能算清吗?不少同学恐怕看完题就已经动手算了,而且很快就算出了答案。不过对不对可不敢保证。说实在的,这题要算对并不那么容易,这可要不慌不忙细心地算才行。

通常可以列一个表来算这个题:(师设计表格) 填了几行后,你就可以总结出几条结论:

(1)每个月的大兔子数就是上个月的兔子总数。(因上个月的小兔这个月都长成大兔)

(2)每个月的小兔子数就是上个月的大兔数。(因上月大兔子这个月都需生一对小兔,而上个月的小兔这个月长成大兔但不生兔子。)由(1)可知:每月小兔数就是前月的兔子总数。

(3)每月兔子总数是当月大、小兔子数的和。由(1)、(2)知每月兔子数就等于上月与前月这两个月兔子数的和。 若记第n个月的兔子数为fn,就有 f0+f1=f2,f1+f2=f3,f2+f3=f4……

一般的,有fn-2+fn-1=fn。有了这个规律,填这个表就很容易了。 你看,养一对兔子,一年之后就会发展壮大成了一个养兔场了。


四年级趣味数学教案.(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:人教版四年级英语上册教案全套

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: