认识平面几何的61个著名定理

2020-12-16 10:09

适合高中数学竞赛

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】

★1、勾股定理(毕达哥拉斯定理)

★2、射影定理(欧几里得定理)

★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分

4、四边形两边中心的连线和两条对角线中心的连线交于一点

5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

★6、三角形各边的垂直平分线交于一点。

★7、从三角形的各顶点向其对边所作的三条垂线交于一点

8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL

9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,

11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上

12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: r s as bs c,s为三角形周长的一半 s

★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点

15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)

16、斯图尔特定理:P将三角形ABC的边BC分成m和n两段,则有n×AB2+m×AC2=BC×(AP2+mn)

17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD

18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上

★19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD


认识平面几何的61个著名定理.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:计算机基础考试试题及答案

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: