cvpr2013-Modeling Mutual Visibility Relationship in Pedestri(4)

2021-01-20 21:49

发表在CVPR13上的行人检测方法

ortestingstage,itisconsideredasahiddenrandomvector.Inourimplementation,DPMin[14]isusedforobtainingpartdetectionscoresins.Thedeformationamongpartsarearrangedinthestar-modelwithfull-bodybeingthecenter.Inthispaper,itisassumedthatpart-basedmodelshavein-tegratedbothappearanceanddeformationscoresintos.Inordertohavethetoplayerrepresentingocclusionstatusinamoredirectway,s3accumulatethedetectionscoresthat ttheirpossibleocclusionstatuses.Forexample,

s31,1= s31,1+s21,1+s11,1+s1

1,2,

s31,2

=

s 3 41,2

+

s2 41,i

+

s1(4)

1,i,

i=1

i=1

wheresl1,iforl=1,2,i=1,...,Pl

isthedetectionscorefortheithpartatlayerl,s 31,1isthedetectionscoreforthehead-shoulderpartatlayer3ands 3forthehead-torsopartatlayer3.1,2isthedetectionscoreInourimplementationofthedetector,thehead-shoulderpartatthetoplayerhashalfoftheresolutionofHOGfeaturescomparedwiththehead-shoulderpartatthemiddlelayer.

Theoverlapinformationatlayer2inFig.2isdenotedby

o=[oTTheoverlap1oT2]T,whereoinformationn=[oforsixn,1opartsn,2...oareleft-head-shouldern,6]T

forn=1,2.on,1,right-head-shoulderon,2,left-torsooleft-legoInordern,3,right-torsoon,4,n,5andright-legon,6.toobtaino,theoverlapofthesesixpartswiththepedestrianregionoftheotherpedestrianiscomputed.Accordingtotheaver-agesilhouetteinFig.3(a),whichisobtainedbyaveragingthegradientofpositivesamples,tworectanglesareusedforapproximatingthepedestrianregionoftheotherpedestrian.Onerectangleisusedfortheheadregion,denotedbyAisusedforthetorso-legregion,denotedh,anotherrectanglebyAt.Denotetheregionon,ibyAn,i.on,iisobtainedasfollows:

on,i=

area(An,i∩Ah)+area(An,i∩At)

area(A,

(5)

n,i)

wherearea(·)computestheareainthisregion,∩denotesintersectionofregion.Forexample,therightpersoninFig.3(b)hastheleft-head-shoulder,left-torsoandleft-legoverlappingwiththepedestrianregionsoftheleftperson.SinceAn,i,AhandAarea(·)and∩intarerectangularregions,theopera-tions(5)canbeef http://www.77cn.com.cnparedwithsegmentation,therectangularregionisanapproximatebutfasterapproachforobtainingpedestrianre-gionandcomputingtheoverlapinformationo.

Attheinferencestage,thepedestrianco-existencelabelyisinferredfromfeaturesx.Thepartvisibility

probability

Figure3.(a)Tworectangular īregionsusedfor ī

approximatingthe

pedestrianregionand(b)anexamplewithleft-head-shoulder,left-torsoandleft-legoverlappingwiththepedestrianregionsoftheleftperson.

hlj

+1isobtainedusingthemodelinFig.2,i.e. hlj+1=p(hlj

+1=1|hl,x)=σ(hlT

wl

,j+cl+1+glT

jj+1slj+1),

(6)

hl= h

lifl=L 1,hl=[h lToT]T

,ifl=L 1,whereσ(t)=(1+exp( t)) 1isthelogisticfunction.The

estimatedoutputφ(y;x)isobtainedasfollows:

φ(y;x)=ey(wLT

h

L+b)

/Z,(7)

whereZ= T L

y=0,1ey(wLh+b).ForthemodelinFig.2,

wehaveL=3.Thelearningofparameterswl

,j,wL,clj

+1andglj+1

in(6)and(7)areexplainedinSection4.2.

4.2.Thelearningofthedeepmodel

Thefollowingtwostagesareusedforlearningthepa-rametersin(6)and(7).

Stage1:Pretrainparameterswl

l+1andglFine-tunealltheparameters ,j,cStage2:j

bybackpropagat-j+1in(6).ingerrorderivatives.Thevariablesarearrangedasaback-propagation(BP)networkasshowninFig.2(a).

Asstatedin[12],unsupervisedpretrainingguidesthelearningofthedeepmodeltowardsthebasinsofattrac-tionofminimathatsupportbettergeneralizationfromthetrainingdata.Therefore,weadoptunsupervisedpretrainingofparametersatstage1.Thegraphicalmodelforunsu-pervisedpretrainingisshowninFig.4.Theprobabilitydistributionofp(h1,...,hL |x)ismodeledasfollows:

L 2p(h1,...,hL|x)=

p(hl|hl+1,x)p(hL 1,hL|x),

l=1

p(hli=1|hl+1,x)=σ(wli, hl+1+glisli+cli),

p(hL 1,hL|x)=p(hL 1 ,hL|s)=e

hL 1T

WL 1hL+(cL 1+gL 1 sL 1)ThL 1+(cL+gL sL)ThL

,(8)

where denotestheentrywiseproduct,i.e.(A B)Ai,j=i,jBi,j,hisde nedin(6).ForthemodelinFig.4,


cvpr2013-Modeling Mutual Visibility Relationship in Pedestri(4).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:GSM BTS3900 工程安装客户准备指导书(合入GRFU) 20081121-B-V1.1

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: