Hecke algebras at roots of unity.
References
1] G.E. Andrews, R.J. Baxter and P.J. Forrester, Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities, J. Stat. Phys. 35 (1984), 193{266. 2] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m; 1; n), preprint, 1996. 3] R.J. Baxter, Exactly solved models in statistical mechanics, (1984) Academic Press. 4] R. Dipper and G.D. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. 52 (1986), 20{52. 5] E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Paths, Maya diagrams, and b representations of sl(r; C ), Adv. Stud. Pure Math. 19 (1989), 149{191. 6] E. Date, M. Jimbo, T. Miwa and M. Okado, Automorphic properties of local height probabilities for integrable solid-on-solid models, Phys. Rev. B 35 (1987), 2105{2107. 7] O. Foda, B. Leclerc, M. Okado, J.-Y. Thibon and T.A. Welsh, Combinatorics of solvable lattice models, and modular representations of Hecke algebras, submitted to Geometric Analysis and Lie Theory in Mathematics and Physics, Lecture Notes Series of the Australian Mathematical Society. 8] O. Foda, B. Leclerc, M. Okado, J.-Y. Thibon and T.A. Welsh, in preparation. b 9] O. Foda, M. Okado and S.O. Warnaar, A proof of polynomial identities of type sl(n)1 bl(n)1=sl(n)2, J. Math. Phys. 37 (1996), 965{986. b s 10] I. Grojnowski, A ne Hecke algebras (and a ne quantum GLn ) at roots of unity, Internat. Math. Res. Notices (1994), 215-217. 11] T. Hayashi, q-analogues of Cli ord and Weyl algebras - spinor and oscillator representations of quantum enveloping algebras, Commun. Math. Phys. 127 (1990), 129{144. 12] G.D. James, The decomposition matrices of GLn (q) for n 10, Proc. London Math. Soc. 60 (1990), 225{265. 13] G.D. James and A. Kerber, The representation theory of the symmetric group, AddisonWesley, 1981. 14] J.C. Jantzen and G.M. Seitz, On the representation theory of the symmetric groups, Proc. London Math. Soc. 65 (1992), 475{504. b 15] M. Jimbo, K. Misra, T. Miwa a
nd M. Okado, Combinatorics of representations of Uq (sl(n)) at q= 0, Commun. Math. Phys. 136 (1991), 543{566. 16] M. Jimbo, T. Miwa and M. Okado, Solvable lattice models whose states are dominant integral weights of A(1) 1 Lett. Math. Phys. 14 (1987) 123{131. n? 17] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465{516. 18] M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), 455{485. 19] M. Kashiwara, T. Miwa and E. Stern, Decomposition of q-deformed Fock spaces, Selecta Mathematica 1996. 20] A.S. Kleshchev, On restrictions of irreducible modular representations of semisimple algebraic groups and symmetric groups to natural subgroups I, Proc. London Math. Soc. 69 (1994), 515-540. 21] A.S. Kleshchev, Branching rules for the modular representations of symmetric groups III; some corollaries and a problem of Mullineux, J. London Math. Soc. 2 (1995). 22] A. Lascoux, B. Leclerc and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum a ne algebras, Commun. Math. Phys. 181 (1996), 205-263. b 23] K.C. Misra and T. Miwa, Crystal base of the basic representation of Uq (sln ), Commun. Math. Phys. 134 (1990), 79{88. 24] E. Stern, Semi-in nite wedges and vertex operators, Internat. Math. Res. Notices 1995, 201220. 25] Ch. Bessenrodt and J. Olsson, Residue symbols and Jantzen-Seitz partitions, to appear.