信息论与编码实验报告
cout<<"X["<<i+1<<"]="; cin>>X[i]; } //由大到小排序 for(i=0;i<N-1;i++) for(j=i+1;j<N;j++) if(X[i]<X[j]) { double temp=X[i];X[i]=X[j];X[j]=temp; } int *K=new int[N]; //确定码长 for(i=0;i<N;i++) { K[i]=int(-(log(X[i])/log(2)))+1; //默认码长为1-log2(p(xi)) if(K[i]==(-(log(X[i])/log(2))+1)) //当K[i]=-log2(p(xi))时,K[i]-- K[i]--; } //累加概率 double *Pa=new double[N]; Pa[0]=0.0; for(i=1;i<N;i++) Pa[i]=Pa[i-1]+X[i-1]; //将累加概率转换为二进制 string *code=new string[N]; for(i=0;i<N;i++) for(j=0;j<N;j++) //这里默认最大码长不超过信源符号个数 { double temp=Pa[i]*2; if(temp>=1) //累加概率乘2大于1时,对应码字加1,累加概率自身取余 { code[i]+="1"; Pa[i]=Pa[i]*2-1; } else //累加概率乘2小于1时,对应码字加0,累加概率自身取余 { code[i]+="0"; Pa[i]*=2; } } for(i=0;i<N;i++) code[i]=code[i].substr(0,K[i]); //求码字 //输出码字 cout<<setw(12)<<"信源"<<setw(12)<<"概率p(x)"<<setw(12)<<"累加概率Pa(x)"<<setw(8)<<"码长K"<<setw(8)<<"码字"<<endl; for(i=0;i<N;i++) cout<<setw(12)<<i+1<<setw(12)<<X[i]<<setw(12)<<Pa[i]<<setw(8)<<K[i]<<setw(8)<<code[i]<<endl; delete []X; delete []Pa; delete []K; delete []code; return 0; }