基于RBF神经网络的不利天气道路通行能力计算(4)

2021-04-06 07:39

RBF神经网络的实现过程 RBF人工神经网络 RBF人工神经网络结构

参考文献

[1] 何 磊.快速公共交通引导城市走健康之路.城市

[4] 邓汉英,郭 超.红浅谈快速公交汽车运营系统的

评价分析.城市道桥与防洪,2005(5):18221

[5] KarenElizabethRendek.BusRapidTransit:The

B2lineservice,vancouve.Canada.

[6] 王其藩.系统动力学.北京:清华大学出版社,1994[7] 上海市城市规划管理局.上海市第三次综合交通调

atransitinnovationforgreatTheUniversityofcagary,

2002,

规划,2002(3):83286

[2] 上海交通大学交通运输研究所.上海市交通供需变

化与城市协调发展研究.上海:上海交通大学,2005

[3] 陈明明,牛惠民.快速公交系统及评价问题的研究.

兰州交通大学学报:自然科学版,2006,25(4):1132

117

查总报告.上海:上海市城市规划管理局,2005

SimulationandEvaluationofBRTApplicationinMetropolis

LIUBingen JUANZhicai JIAHongfei

(JilinUniversity,Changchun130025,China)1

(ShanghaiJiaotongUniversity,Shanghai200052,China)2

Abstract:BRTisanimportantmeasuretosolvethetandplementsustainable

.Basedontheoriesofsystemdynamicsonbetweenlanduseanddevelopmentinbigcities

trafficsystemwasestablished.ThemodelwasactualtravelflowwithitsfittingdataofShanghaiCity.BoththeresultoftheofsofShanghaiCityinthefutureunderrecenttendency,withoutanywaysbeingltwithBRTbeingcarriedout,wereforecastedbyusingthe.TheTonassiestablishedmodelmulatedandevaluatedbycomparingthevariationsoftheservicelevelofroadtattractionratiosofBRTtotravelflow.

1

2

1

Keywordssimulationandevaluation;landuse;trafficsystem;systemdynamics

(上接第23页)

RoadCapacityCalculationunderAdverseWeather

BasedonRBFNeuralNetwork

112

ZHANGXiqiao SHENGHongfei YAOYanxue

(HarbinInstituteofTechnology,Harbin150090,China)1

(HarbinNormalUniversity,Harbin150500,China)2

Abstract:Variousinfluencingfactorsofurbanroadcapacityunderadverseweatherarestochasticandnonlinear.

Therefore,itisunsuitabletoadoptnormalamendmentmethodtocalculatetheroadcapacity.BasedontheRBFNeuralNetwork,whichcananalyzethestochasticandnonlinearcharacteristics,thecomponentsofroadnetworkwerere2dividedandtheinfluencingfactorswerere2selected.Then,theRBFNeuralNetworkmodelwasbuiltforcalculationofroadcapacity.AnexamplewasprovidedbasedontheactualsituationofHarbinCityunderrainstorm.Themaximumerrorbetweenthecalculationresultsandtheobservationdatawas-1.16%.Thus,thefeasibilityandvalidityofthemodelwerevalidated.

Keywords:adverseweather;roadcapacity;RBFneuralnetwork


基于RBF神经网络的不利天气道路通行能力计算(4).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:证券期货行业信息服务安全保障与监管共性支撑技术研究与示范工程

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: