【2022年整理】小学数学新课程标准(5)

2022-01-07 11:39

(4)知道三角形的内心和外心。

(5)了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径的关系,会用三角尺过圆上一点画圆的切线。

(6)探索并证明切线长定理:过圆外一点所画的圆的两条切线长相等(参见例63)。

(7)会计算圆的弧长、扇形的面积。

(8)了解正多边形的概念及正多边形与圆的关系。

6.尺规作图

(1)能用尺规完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线。

(2)会利用基本作图作三角形:已知三边、两边及其夹角、两角及其夹边作三角形;已知底边及底边上的高线作等腰三角形;已知一直角边和斜边作直角三角形。

(3)会利用基本作图完成:过不在同一直线上的三点作圆;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形。

(4)在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法。

7.定义、命题、定理

(1)通过具体实例,了解定义、命题、定理、推论的意义。

(2)结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。

(3)知道证明的意义和证明的必要性(参见例75),知道证明要合乎逻辑(参见例64),知道证明的过程可以有不同的表达形式,会综合法证明的格式。

(4)了解反例的作用,知道利用反例可以判断一个命题是错误的。

(5)通过实例体会反证法的含义。

(二)图形的变化

1.图形的轴对称

(1)通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分(参见例65)。

(2)能画出简单平面图形(点,线段,直线,三角形等)关于给定对称轴的对称图形。

(3)了解轴对称图形的概念;探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质。

(4)认识并欣赏自然界和现实生活中的轴对称图形。

2.图形的旋转

(1)通过具体实例认识平面图形关于旋转中心的旋转。探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等(参见例65)。

(2)了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。

(3)探索线段、平行四边形、正多边形、圆的中心对称性质。

(4)认识并欣赏自然界和现实生活中的中心对称图形。

3.图形的平移

(1)通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等(参见例65)。

(2)认识并欣赏平移在自然界和现实生活中的应用。

(3)运用图形的轴对称、旋转、平移进行图案设计。

4.图形的相似[4]

(1)了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。

(2)通过具体实例认识图形的相似。了解相似多边形和相似比。

(3)掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。

(4)了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。 *了解相似三角形判定定理的证明。

(5)了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方。

(6)了解图形的位似,知道利用位似可以将一个图形放大或缩小。

(7)会利用图形的相似解决一些简单的实际问题(参见例75)。

(8)利用相似的直角三角形,探索并认识锐角三角函数(sinA,cosA,tanA),知道30°,45°,60°角的三角函数值。

(9)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它的对应锐角。

(10)能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。

5.图形的投影

(1)通过丰富的实例,了解中心投影和平行投影的概念。

(2)会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,并会根据视图描述简单的几何体。

(3)了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作实物模型。

(4)通过实例,了解上述视图与展开图在现实生活中的应用。

(三)图形与坐标

1.坐标与图形位置

(1)结合实例进一步体会用有序数对可以表示物体的位置。

(2)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。

(3)在实际问题中,能建立适当的直角坐标系,描述物体的位置(参见例66)。

(4)会写出矩形的顶点坐标,体会可以用坐标刻画一个简单图形。

(5)在平面上,能用方位角和距离刻画两个物体的相对位置(参见例67)。

2.坐标与图形运动

(1)在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。

(2)在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系。

(3)在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化。

(4)在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一个边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的。

三、统计与概率

(一)抽样与数据分析

1. 经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据。

2. 体会抽样的必要性,通过实例了解简单随机抽样(参见例68)。

3. 会制作扇形统计图,能用统计图直观、有效地描述数据。

4. 理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述(参见例69)。

5. 体会刻画数据离散程度的意义,会计算简单数据的方差(参见例70)。

6. 通过实例,了解频数和频数分布的意义,能画频数直方图,能利用频数直方图解释数据中蕴涵的信息(参见例71)。

7. 体会样本与总体关系,知道可以通过样本平均数、样本方差推断总体平均数、总体方差。

8. 能解释统计结果,根据结果作出简单的判断和预测,并能进行交流(参见例71)。

9. 通过表格、折线图、趋势图等,感受随机现象的变化趋势(参见例72)。

(二)事件的概率

1. 能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率(参看例73,例74)。

2. 知道通过大量地重复试验,可以用频率来估计概率。

四、综合与实践

1.结合实际情境,经历设计解决具体问题的方案,并加以实施的过程,体验建立模型、解决问题的过程,并在此过程中,尝试发现和提出问题。

2.会反思参与活动的全过程,将研究的过程和结果形成报告或小论文,并能进行交流,进一步获得数学活动经验。

3.通过对有关问题的探讨,了解所学过知识(包括其他学科知识)之间的关联,进一步理解有关知识,发展应用意识和能力。

(参见例75,例76,例77,例78,例79,例80)

第四部分实施建议

一、教学建议

教学活动是师生积极参与、交往互动、共同发展的过程。

数学教学应根据具体的教学内容,注意使学生在获得间接经验的同时也能够有机会获得直接经验,即从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流等,获得数学的基础知识、基本技能、基本思想、基本活动经验,促使学生主动地、富有个性地学习,不断提高发现问题和提出问题的能力、分析问题和解决问题的能力。

在数学教学活动中,教师要把基本理念转化为自己的教学行为, 处理好教师讲授与学生自主学习的关系,注重启发学生积极思考;发扬教学民主,当好学生数学活动的组织者、引导者、合作者;激发学生的学习潜能,鼓励学生大胆创新与实践;创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材;关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展;合理地运用现代信息技术,有条件的地区,要尽可能合理、有效地使用计算机和有关软件,提高教学效益。

1.数学教学活动要注重课程目标的整体实现

为使每个学生都受到良好的数学教育,数学教


【2022年整理】小学数学新课程标准(5).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:消防知识安全常识消防安全基本常识消防安全知识大全

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: