5.各公因子的表达式:
F1=a11X1+ a12X2+?+ a1mXm F2=a21X1+ a22X2+?+ a2mXm ? ? ? Fm=am1X1+ am2X2+?+ ammXm
因子得分: 如果后续分析需要,如进行回归分析等等,通常需要进一步计算各公因子的因子得分。即给出各因子在每一个案例(case)上的值。
6. 模型的适合度:
因子分析的最后,应该对构建的模型是否适合问题本身有一个认识,这就涉及到模型的适合度的判断。这种判断常常基于残差矩阵而进行。
因子模型建立,有了因子负载后,我们就可以计算的观测变量的方差-协方差阵,这种由公因子再生的方差-协方差阵(reproduce correlation matrix)与实际观测到的方差-协方差阵(observed correlation matrix)之间的偏差,即残差矩阵(residuals matrix)是我们判断模型适合度的重要依据。如果残差矩阵中的值都比较大,那么我们有理由认为模型并不是很适合;反之如果残差矩阵接近于零矩阵,那么显然公因子可以很好的解释变量的方差-协方差关系,模型是合适的。