2017年贵州省毕节市中考数学试卷(6)

2020-02-21 15:16

∴AE=3tan60°=3.

【点评】本题考查了切线的判定与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;也考查了平行四边形的性质和解直角三角形.

27.(16分)(2017?毕节市)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.

(1)求这个二次函数的解析式;

(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;

(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.

【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式; (2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;

第26页(共28页)

(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标. 【解答】解:

(1)设抛物线解析式为y=ax2+bx+c, 把A、B、C三点坐标代入可得∴抛物线解析式为y=x2﹣3x﹣4;

(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,

,解得

∴PO=PD,此时P点即为满足条件的点, ∵C(0,﹣4), ∴D(0,﹣2), ∴P点纵坐标为﹣2,

代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=∴存在满足条件的P点,其坐标为((3)∵点P在抛物线上, ∴可设P(t,t2﹣3t﹣4),

过P作PE⊥x轴于点E,交直线BC于点F,如图2,

(小于0,舍去)或x=

,﹣2);

第27页(共28页)

∵B(4,0),C(0,﹣4), ∴直线BC解析式为y=x﹣4, ∴F(t,t﹣4),

∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,

∴S△PBC=S△PFC+S△PFB=PF?OE+PF?BE=PF?(OE+BE)=PF?OB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,

∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6, ∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.

【点评】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的性质、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中用P点坐标表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.

第28页(共28页)


2017年贵州省毕节市中考数学试卷(6).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:苏教版小学体育二年级下册全册教案表格式1

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: