练习1 基础练习
一、矩阵及数组操作:
1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4)。
解eye(3) eye(15,8) ones(3) ones(15,8) zeros(3) zeros(15,8) X1=(1+(1-(-1))*rand(3)) X2=(1+(1-(-1))*rand(15,8)) Y1=1+sqrt(4)*randn(3) Y2=1+sqrt(4)*randn(15,8)
2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。
解:a=fix((10-0+1)*rand(10)+0) x=5 i=find(a>=x) n=length(i)
3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。
解:A=[1 2 2 3 4;0 0 0 0 0;4 5 6 2 3;0 0 0 0 0;];
A([2,4],:)=[] B=A'; B(:,[2,4])=[]
二、绘图:
4.在同一图形窗口画出下列两条曲线图像: y1=2x+5; y2=x^2-3x+1, 并且用legend标注。 解:x=0:0.01:10;
y1=2*x+5; y2=x.^2-3*x+1;
1
plot(x,y1,x,y2) legend('y1', 'y2')
80706050403020100-10 0y1y2 12345678910
5.画出下列函数的曲面及等高线: z=x^2+y^2+sin(xy).
解:[x,y]=meshgrid(0:0.25:4*pi); z=x.^2+y.^2+sin(x.*y); contour3(x,y,z); meshc(x,y,z)
4003002001000151010500515
2
三、程序设计:
6.编写程序计算(x在[-3,3],间隔0.01)
解:x=input('??ê?è?xμ??μ:'); if x>=-3&x<-1 y=(-x.^2-4*x-3)/2; elseif x>=-1&x<1 y=-x.^2+1; elseif x>=1&x<=3 y=(-x.^2+4*x-3)/2; else y='error' end y
7.有一列分数序列:
求前15项的和。
解:a=1; b=2; sum=0; for k=1:15 c=b/a; sum=sum+c; t=b; b=a+b; a=t; end sum
8.用至少三种方法编写函数实现求任意整数n的阶乘。
解:法一:s=factorial(n)
法二:gamma(n) 求出的是(n-1)! 法三:n=input('please input n:');
x=1:n;
3
prod(x)
9.将任意大于6的偶数m写成两个素数p1、p2的和(试着写出所有的m=p1+p2的可能形式)。
解:function y=f(n);
n=input('??ê?è?nμ??μ:'); if mod(n,2);
error('n2?ê???êy.????D???DD3ìDò.') elseif n<=6;
error('n±?D?′óóú6.????D???DD3ìDò.') else
for m=1:n; for k=m:n;
if (isprime(m))&(isprime(k))&(m+k==n);
disp([num2str(n),'=',num2str(m),'+',num2str(k)]); break; end; end; end; end;
10.是否任意3的倍数m可以写成两个素数p1、p2、p3的和(试着写出所有的m=p1+p2+p3 的可能形式)?
解:function y=fg(n); n=input('请输入n的值:'); if mod(n,3);
error('n不是3的倍数.请重新运行.') elseif n<6;
error('n必须不小于6.') else
for m=1:n; for k=m:n; for p=k:n
if(isprime(m))&(isprime(k))&(isprime(p))&(m+k+p==n);
disp([num2str(n),'=',num2str(m),'+',num2str(k),'+',num2str(p)]); break; end; end; end;
4
end; end;
四、数据处理与拟合初步:
11.通过测量得到一组数据: t 1 4.84y 2 2 4 8 9 8 4 6 2 5 分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出拟合曲线进行对比。
解:t=1:10;
y=[4.842,4.362,3.754,3.368,
3.169,3.038,3.034,3.016,3.012,3.005]; x1=exp(-t); x2=t.*exp(-t); y1=polyfit(x1,y,1) 可以写出:
y1=5.2165*exp(-t)+3.1564 y2=polyfit(x2,y,1) 可以写出:
y2=5.0273*t.*exp(-t) +2.9973 plot(t,y,t,y1,'r--',t,y2,'gx')
5.52 4.363 3.754 3.365 3.166 3.037 3.038 3.019 3.0110 3.0054.543.532.512345678910
另:此题也可以采用工具箱直接进行运算。
5