小学奥数举一反三(六年级)(2)

2021-09-24 10:04

1. 45×

2.08+1.5×37.6

2. 52×11.1+2.6×778

3. 48×1.08+1.2×56.8

4. 72×2.09-1.8×73.6

【例题4】计算:3又3/5×25又2/5+37.9×6又2/5

【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。当出现12.5×6.4时,我们又可以将6.4看成8×0.8,这样计算就简便多了。所以

原式=3又3/5×25又2/5+(25.4+12.5)×6.4

=3又3/5×25又2/5+25.4×6.4+12.5×6.4

=(3.6+6.4)×25.4+12.5×8×0.8

=254+80

=334

练习4:

计算下面各题:

1.6.8×16.8+19.3×3.2

2.139×137/138+137×1/138

3.4.4×57.8+45.3×5.6

【例题5】计算81.5×15.8+81.5×51.8+67.6×18.5

【思路导航】先分组提取公因数,再第二次提取公因数,使计算简便。所以

原式=81.5×(15.8+51.8)+67.6×18.5

=81.5×67.6+67.6×18.5

=(81.5+18.5)×67.6

=100×67.6

=6760

练习5:

1.53.5×35.3+53.5×43.2+78.5×46.5

2.235×12.1++235×42.2-135×54.3

3.3.75×735-3/8×5730+16.2×62.5

精品

.

第3讲简便运算(二)

一、知识要点

计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。

二、精讲精练

【例题1】计算:1234+2341+3412+4123

【思路导航】整体观察全式,可以发现题中的4个四位数均由数1,2,3,4组成,且4个数字在每个数位上各出现一次,于是有

原式=1×1111+2×1111+3×1111+4×1111

=(1+2+3+4)×1111

=10×1111

=11110

练习1:

1.23456+34562+45623+56234+62345

2.45678+56784+67845+78456+84567

3.124.68+324.68+524.68+724.68+924.68

【例题2】计算:2又4/5×23.4+11.1×57.6+6.54×28

【思路导航】我们可以先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算。所以

原式=2.8×23.4+2.8×65.4+11.1×8×7.2

=2.8×(23.4+65.4)+88.8×7.2

=2.8×88.8+88.8×7.2

=88.8×(2.8+7.2)

=88.8×10

=888

练习2:计算下面各题:

1.99999×77778+33333×66666

2.34.5×76.5-345×6.42-123×1.45

3.77×13+255×999+510

【例题3】计算(1993×1994-1)/(1993+1992×1994)

【思路导航】仔细观察分子、分母中各数的特点,就会发现分子中1993×1994可变形为1992+1)×1994=1992×1994+1994,同时发现1994-1 = 1993,这样就可以把原式转化成分子与分母相同,从而简化运算。所以

原式=【(1992+1)×1994-1】/(1993+1992×1994)

精品

.

=(1992×1994+1994-1)/(1993+1992×1994)

=1

练习3:计算下面各题:

1.(362+548×361)/(362×548-186)

2.(1988+1989×1987)/(1988×1989-1)

3.(204+584×1991)/(1992×584―380)―1/143

【例题4】有一串数1,4,9,16,25,36…….它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少?

【思路导航】这串数中第2000个数是20002,而第2001个数是20012,它们相差:20012-20002,即

20012-20002

=2001×2000-20002+2001

=2000×(2001-2000)+2001

=2000+2001

=4001

练习4:计算:

1.19912-19902 2.99992+19999 3.999×274+6274

【例题5】计算:(9又2/7+7又2/9)÷(5/7+5/9)

【思路导航】在本题中,被除数提取公因数65,除数提取公因数5,再把1/7与1/9的和作为一个数来参与运算,会使计算简便得多。

原式=(65/7+65/9)÷(5/7+5/9)

=【65×(1/7+1/9)】÷【5×(1/7+1/9)】

=65÷5

=13

练习5:

计算下面各题:

1.(8/9+1又3/7+6/11)÷(3/11+5/7+4/9)

2.(3又7/11+1又12/13)÷(1又5/11+10/13)

3.(96又63/73+36又24/25)÷(32又21/73+12又8/25)

精品

.

第4讲简便运算(三)

一、知识要点

在进行分数运算时,除了牢记运算定律、性质外,还要仔细审题,仔细观察运算符号和数字特点,合理地把参加运算的数拆开或者合并进行重新组合,使其变成符合运算定律的模式,以便于口算,从而简化运算。

二、精讲精练

【例题1】

精品

.

精品 计算:(1)4445 ×37 (2) 27×1526

.

精品 (1) 原式=(1-145 )×37

.

精品 =1×37-145 ×37

.

精品 =37-3745

.

精品 =36845

. 练习1

用简便方法计算下面各题:

精品

.

精品 1. 1415 ×8 2. 225 ×126 3. 35×1136


小学奥数举一反三(六年级)(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:《社会心理学》复习指导与例题分析

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: