我们之所以能用遥感技术识别不同地物,是因为不同地物具有不同的光谱特性,同类地物具有相似的光谱特性,具体是不同地物在不同波段反射率存在差异;而同类地物的光谱相似,但随着该地物的内在差异而有所变化。当遥感器接收到这些来自于不同地物、表现出不同差异的光波,再把它记录下来,人们就可以根据这种差异来识别地物了。
2. 引起遥感影像变形的主要原因是什么? 6分
主要原因有以下五点:1. 遥感平台位置和运动状态变化的影响; 2. 地形起伏的影响; 3. 地球表面曲率的影响; 4. 大气折射的影响; 5 地球自转的影响
3. 与可见光和红外遥感相比,微波遥感有什么特点? 10分
与可见光和红外遥感相比,微波遥感有以下特点:1.微波遥感可以全天候、全天时工作。可见光和近红外是利用太阳辐射,只能白天成像;而热红外影像可以在夜间可成像,但受天气雨云的影响,若天气不好,则成像效果较差,微波因为波长较长,具有穿云透雾的能力,可不受天气影响,同时多为主动遥感,夜间亦可成像。2.微波对冰、雪、森林、土壤等有一定的穿透能力,而可见光和红外几乎不具备穿透能力。
3.具有精确测距能力、测量土壤含水量能力。微波差分干涉测量技术可计算地形高度、微地形变化,且微波对土壤含水量的敏感性强。4.对海洋遥感有特殊意义,由于其不受天气的影响,同时对地形起伏比较敏感,在海洋监测中有很重要的应用。
4. 简述非监督分类的过程。8分
非监督分类的基本过程是:1. 确定初始类别参数;2. 计算每一像元与各类别中心的距离,选择与中心距离最短的一类作为该像元的归属类;3. 根据事先设定阈值,将类别合并或分裂;4. 计算新的类别中心,把新值与原中心值对比,有差异则用新值为集群中心;5.重复2—4的步骤;6. 聚类中心的位置不再变化或到达迭代次数,运算停止
5. 侧视雷达是怎么工作的?其工作原理是什么?8分
侧视雷达所使用天线为真实孔径天线,工作原理和过程如下: 1. 通过天线不断发出强脉冲波,间隔为微秒。
2. 脉冲遇到地面物体,一部分被吸收, 一部分被反射回来,反射方向与入射方向与180度。
3. 随距离天线远近,脉冲返回的时候不同,天线按接收脉冲的时间来记录电信号的强弱,记录下距离和强度。
天线发射和接收雷达脉冲交替进行。
6. 请结合所学Landsat和SPOT卫星的知识,谈谈陆地卫星的特点15分
陆地卫星属陆地资源卫星,都属近极地太阳同步卫星,这种轨道卫星的特点观测范围宽,可以覆盖南北纬80度间的地球范围。而且每天在几乎同一地方时经过各区上空。Landsat是9点至10点多,SPOT是10:30至11点多,保证了接收图象在色调上的一致性。
具有较高的分辨率:陆地资源卫星的分辨率都较高,一般为几十米,Landsat是79-30m不等,SPOT则可达到2.5-20m的空间分辨率。 回归周期较长,对同一点的重复观测能力较差。由于陆地资源卫星是为探测资源而用,所以回归周期较长,Landsat为16-18天,SPOT卫星可达26天。但随着现代技术的发展,传感器可以作倾斜观测,这样对同一个点的观测周期可以大幅度缩短,SPOT可以达到1-4天不等。
现在陆地卫星的发展趋势是传感器具有侧摆功能,观测灵活性增加;除多光谱波段外,增设全色波段;多为推扫式传感器。如新的商业陆地资源卫星IKONOS、Quick bird等的出现
7. 请结合所学遥感知识,谈谈遥感技术的发展趋势 15分 现代遥感技术的发展趋势是:1. 波谱分辨力提高,波谱范围增加,技术成熟。随着热红外成像、机载多极化合成孔径雷达和高分辨力穿透雷达、星载合成孔径雷达技术的日益成熟,遥感波谱域从最早的可见光向近红外、短波红外、热红外、微波方向发展,波谱域的扩展将进一步适应各种物质反射、辐射波谱的特征峰值波长的宽域分布。2. 大、中、小卫星相互协同,高、中、低轨道相结合,在时间分辨率上从几小时到
18天不等,形成一个不同时间分辨率的互补系列。3. 随着高空间分辨率新型传感器的应用,遥感图像空间分辨率从1km、500m、250m、80m、30m、20m、10m、5m发展到1m,军事侦察卫星传感器可达到15cm或者更高分辨率,空间分辨率的提高,有利于分类精度的提高,但也增加了计算机分类的难度。4. 高光谱遥感的发展,使得遥感波段宽度从早期的0.4um(黑白摄影)、0.1um(多光谱扫描)到5nm(成像光谱仪),遥感器波段宽度窄化,针对性更强,可以突出特定地物反射峰值波长的微小差异;同时,成像光谱仪等的应用,提高了地物光谱分辨力,有利于区别各类物质在不同波段的光谱响应特性。5. 机载三维成像仪和干涉合成孔径雷达的发展和应用,将地面目标由二维测量为主发展到三维测量