概率论第一章答案

2020-06-16 22:03

概率论与数理统计习题及答案

习题 一

1.见教材习题参考答案.

2.设A,B,C为三个事件,试用A,B,C(1) A发生,B,C都不发生; (2) A与B发生,C (3) A,B,C都发生; (4) A,B,C (5) A,B,C都不发生; (6) A,B,C

(7) A,B,C至多有2个发生; (8) A,B,C至少有2个发生. 【解】(1) ABC (2) ABC (3) ABC

(4) A∪B∪C=ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC (5) ABC=A

BC (6) ABC

(7) ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC=A∪B∪C (8) AB∪BC∪CA=ABC∪ABC∪ABC∪ABC 3.

.

4.设A,B为随机事件,且P(A)=0.7,P(A?B)=0.3,求P(AB). 【解】 P(AB)=1?P(AB)=1?[P(A)?P(A?B)]=1?[0.7?0.3]=0.6

5.设A,B是两事件,且P(A)=0.6,P(B)=0.7, (1) 在什么条件下P(AB (2) 在什么条件下P(AB 【解】(1) 当AB=A时,P(AB)取到最大值为0.6.

(2) 当A∪B=Ω时,P(AB)取到最小值为0.3.

6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,

P(AC)=1/12,求A,B,C至少有一事件发生的概率.

【解】 P(A∪B∪C)=P(A)+P(B)+P(C)?P(AB)?P(BC)?P(AC)+P(ABC)

=

11113++?= 4431241

7.

52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?

5332【解】 p=C13C13C13C13/C1352

8.

(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P(A1)=

15 1=()(亦可用独立性求解,下同) 5775

6565

(2) 设A2={五个人生日都不在星期日},有利事件数为6,故P(A2)=5=()

77(3) 设A3={五个人的生日不都在星期日} P(A3)=1?P(A1)=1?(

15

) 79..见教材习题参考答案.

10.一批产品共N件,其中M件正品.从中随机地取出n件(n

n?mn【解】(1) P(A)=CmMCN?M/CN

n(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有PN种,n次抽取中有m

次为正品的组合数为Cmn种.对于固定的一种正品与次品的抽取次序,从M件正

mn?m品中取m件的排列数有PM种,从N?M件次品中取n?m件的排列数为PN?M种,mn?mCmnPMPN?M故 P(A)= nPNn?mCmMCN?M由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成 P(A)=

CnN可以看出,用第二种方法简便得多.

(3) 由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为Nn种,n

次抽取中有m次为正品的组合数为Cn种,对于固定的一种正、次品的抽取次序,m次取得正品,都有M种取法,共有Mm种取法,n?m次取得次品,每次都有N?M种取法,共有(N?M)n?m种取法,故

mn?mP(A)?Cm/Nn nM(N?M)m 2

此题也可用贝努里概型,共做了n重贝努里试验,每次取得正品的概率为

M,则取得N?M??M?m件正品的概率为 P(A)?Cmn???1??NN????mn?m

11..见教材习题参考答案.

12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太

弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A={发生一个部件强度太弱} P(A)?C10C3/C50?13.

1331 19607个球,其中4个是白球,3个是黑球,从中一次抽取3个,

计算至少有两个是白球的概率. 【解】 设Ai={恰有i个白球}(i=2,3),显然A2与A3互斥.

1C2C18P(A2)?433?,C735C344P(A3)?3?

C73522 35故 P(A214.

A3)?P(A2)?P(A3)?0.8和0.7,在两批种子中各随机取一粒,求:

(1) 两粒都发芽的概率;(2) 至少有一粒发芽的概率;

(3) 恰有一粒发芽的概率.

【解】设Ai={第i批种子中的一粒发芽},(i=1,2)

(1) P(A1A2)?P(A1)P(A2)?0.7?0.8?0.56 (2) P(A1(3) P(A1A215.

A2)?0.7?0.8?0.7?0.8?0.94

A1A2)?0.8?0.3?0.2?0.7?0.38

3次正面才停止.

(1) 问正好在第6次停止的概率;

(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.

11131C4()()5212131224?2 ?【解】(1) p1?C5()() (2) p2?222325/32516.0.7及0.6,每人各投了3次,求二人进球

数相等的概率.

【解】 设Ai={甲进i球},i=0,1,2,3,Bi={乙进i球},i=0,1,2,3,则

P(3i?0212AiBi3)?(0.3)3(0.4)3?C130.7?(0.3)C30.6?(0.4)?

C3(0.7)?0.3C3(0.6)0.4+(0.7)(0.6) 17

222233=0.32076

5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.

3

41111C5C2CC2C2213【解】 p?1? ?4C102118.

0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:

(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.

【解】 设A={下雨},B={下雪}. (1) p(BA)?P(AB)0.1??0.2 P(A)0.5(2) p(A19.

B)?P(A)?P(B)?P(AB)?0.3?0.5?0.1?0.7

3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男

为女是等可能的).

【解】 设A={其中一个为女孩},B={至少有一个男孩},样本点总数为23=8,故

P(BA)?P(AB)6/86??

P(A)7/876 7或在缩减样本空间中求,此时样本点总数为7. P(BA)?20.

5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).

【解】 设A={此人是男人},B={此人是色盲},则由贝叶斯公式

P(AB)? ?21.

P(A)P(BA)P(AB) ?P(B)P(A)P(BA)?P(A)P(BA)0.5?0.0520?

0.5?0.05?0.5?0.0025219∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.

题21图 题22图

4

【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x?y|>30.

3021? 如图阴影部分所示. P?602422.

0,1)中随机地取两个数,求:

6的概率; 51(2) 两个数之积小于的概率.

4(1) 两个数之和小于【解】 设两数为x,y,则0

144617(1) x+y<. p1?1?255??0.68

5125(2) xy=<

1?1?111. p2?1???1dx?1dy???ln2 44x?4?4223.

P(A)=0.3,P(B)=0.4,P(AB)=0.5,求P(B|A∪B)

【解】 P(BAB)?P(AB)PA(?)PAB() ?P(AB)P(A)?P(B)?P(AB)0.7?0.51?

0.7?0.6?0.54 ?24.

15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比

赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.

【解】 设Ai={第一次取出的3个球中有i个新球},i=0,1,2,3.B={第二次取出的3球均为新

球}

由全概率公式,有 P(B)??P(BA)P(A)

iii?03

2321C3C3C1C8C9C6C3C3C3699C679?3?3?3?3?3?3?3?36C15C15C15C15C15C15C15C15?0.089

25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学

生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A={被调查学生是努力学习的},则A={被调查学生是不努力学习的}.由题意知P

(A)=0.8,P(A)=0.2,又设B={被调查学生考试及格}.由题意知P(B|A)=0.9,P

5


概率论第一章答案.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:持续改善营商环境推动全县非公有制经济实现高质量发展发改委典型

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: