整数按照能不能被2整除,可以分为两类:
(1)能被2整除的自然数叫偶数,例如
0, 2, 4, 6, 8, 10, 12, 14, 16,
(2)不能被2整除的自然数叫奇数,例如
1,3,5,7,9,11,13,15,17,
整数由小到大排列,奇、偶数是交替出现的。相邻两个整数大小相差1,所以肯定是一奇一偶。因为偶数能被2整除,所以偶数可以表示为2n的形式,其中n为整数;因为奇数不能被2整除,所以奇数可以表示为2n+1的形式,其中n为整数。
每一个整数不是奇数就是偶数,这个属性叫做这个数的奇偶性。奇偶数有如下一些重要性质:
(1)两个奇偶性相同的数的和(或差)一定是偶数;两个奇偶性不同的数的和(或差)一定是奇数。反过来,两个数的和(或差)是偶数,这两个数奇偶性相同;两个数的和(或差)是奇数,这两个数肯定是一奇一偶。
(2)奇数个奇数的和(或差)是奇数;偶数个奇数的和(或差)是偶数。任意多个偶数的和(或差)是偶数。
(3)两个奇数的乘积是奇数,一个奇数与一个偶数的乘积一定是偶数。
(4)若干个数相乘,如果其中有一个因数是偶数,那么积必是偶数;如果所有因数都是奇数,那么积就是奇数。反过来,如果若干个数的积是偶数,那么因数中至少有一个是偶数;如果若干个数的积是奇数,那么所有的因数都是奇数。
(5)在能整除的情况下,偶数除以奇数得偶数;偶数除以偶数可能得偶数,也可能得奇数。奇数肯定不能被偶数整除。
(6)偶数的平方能被4整除;奇数的平方除以4的余数是1。
2n22 因为(2n)=42=4×n,所以(2n)能被4整除;
因为(2n+1)2=4n2+4n+1=4×(n2+n)+1,所以(2n+1)2除以4余1。
(7)相邻两个自然数的乘积必是偶数,其和必是奇数。
(8)如果一个整数有奇数个约数(包括1和这个数本身),那么这个数一定是平方数;如果一个整数有偶数个约数,那么这个数一定不是平方数。