数的整除(能被7、9、11、13整除的数的特征)专题训练

2018-10-24 21:49

数的整除(能被7、9、11、13整除的数的特征)专题训练

知识梳理:

1、整数a除以整数b(b≠0),所得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)。

2、如果整数a能被整数b(b≠0)整除,则称a是b的倍数,b是a的约数。 3、整除的数,其数字和一定是9的倍数.

4、能被11整除的数的特征是这个数的奇数位数字之和与偶数位数字之和的差能被11整除。

5、一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位以前的数字组成的数的差(以大减小)能否被7(11或13)整除。

例题精讲

1、判断47382能否被3或9整除?

分析:能被3或9整除的数的特点是这个数各数位上的数字和是3或9的倍数。 47382各个数位的数字相加和是24,24是3的倍数但不是9的倍数。 解:47382能被3整除,不能被9整除

2、判断42559,7295871能否被11整除? 分析:一个三位以上的整数能否被11整除,只须看这个数的奇数位数字之和与偶数位数字之和的差能否被11整除。

解:42559奇数位的数字和为4+5+9=18,偶数位的数字和为2+5=7,18-7=11是11的倍数,所以42559能被11整除;7295871奇数位的数字和为7+9+8+1=25,偶数位的数字和为2+5+7=14,25-14=11是11的倍数,所以7295871也能被11整除。

3、32335能否被7整除?

分析:一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位以前的数字组成的数的差(以大减小)能否被7(11或13)整除。 解:335-32=303,303不能被7整除,所以32335不能被7整除。

专题特训

1、把516至少连续写几次,所组成的数能被9整除?

2、四位数36AB能同时被2、3、4、5、9整除,则A= B= ?

3、173□是一个四位数,在这个□中先后填入3个数,所得到的3个四位数依次能被9、11、6整除,先后填入的3个数分别是几?

4、九位数8765□4321能被21整除,□中应填几?

5、用1~7七个数字组成不重复数字且能被11整除的七位数,最大的七位数与最小七位的数差是多少?

6、一个五位数a236b能被63整除,这个五位数是多少?

7、如果六位数1992口口能被105整除,那么它的最后两位数是多少?

8、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数可能是多少? 9、一个六位数23□56□是88的倍数,这个数除以88所得的商可能是多少? 10、42□28□是99的倍数,这个数除以99所得的商是多少?

1、解:能被9整除的数的特点是各数位的数字和能被9整除,5+1+6=12,至少再连续写三次,得到516516516各数字的和为36,才能被9整除。

2、解:由能被2和5整除可判断B=0。能被3和9整除可得A可能是0、9,由能被4整除可得A只能为0,所以A=0,B=0。

3、解:能被9整除,□中应填7,能被11整除,□中应填8,能被6整除,□中应填4

4、解:21=3×7,所以8756□4321能被3和7同时整除,根据特征判断可得□中应填0。

5、解:根据能被11整除的数的特征,最大的七位数应为7645231,最小的七位数为1235476,二者的差为7645231-1235476=6409755

6、解:这个数能被63整除即能被7和9同时整除,符合条件的数为22365。 7、解:因为105=3×7×5,所以这个六位数同时满足能被3、7、5整除的数的特征即可。根据整除特征可得末位只能为0或5。

如果末位填入0,那么数字和为1+9+9+2+口+0=21+口,要求数字和是3的倍数,所以口可以为0,3,6,9,验证均不是200-199=1,230-199=31,260-199=61,290-199=91,有9l是7的倍数,即199290是7的倍数,所以题中数字的末两位为90。

8、解:三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有

当和为33时,三个数是10,11,12; 当和为66时,三个数是21,22,23; 当和为99时,三个数是32,33,34。 9、解:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能

又 23056088=2620

23856888=2711

所以,本题的答案是2620或2711。 10、解:因为99=9×11,所以42□28□既是9的倍数,又是11的倍数.根据是9的倍数的特点,这个数各位上数字的和是9的倍数.42□28□这个六位数中已知的四个数的和是4+2+2+8=16,因此空格中两个数字的和是2或11.我们把右起第一、三、五位看做奇位,那么奇位上已知两个数字的和是2+2=4,而偶位上已知两个数字的和是4+8=12,再根据是11的倍数的特点,奇位上数字的和与偶位上数的和之差是0或11的倍数,所以填入空格的两个数应该相差3或相差8.从以上分析可知填入的两个数字的和不可能是2,应该是11.显然它们的差不可能是8,应该是3,符合这两个条件的数字只有7和4.填入空格时要注意7填在偶位上,4填在奇位上,即原六位数是42 7 28 4 ,又427284 99=4316,所以所得的商是4316。

数的整除具有如下性质: 性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。例如,48能被16整除,16能被8整除,那么48一定能被8整除。 性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。例如,21与15都能被3整除,那么21+15及21-15都能被3整除。

性质3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。

利用上面关于整除的性质,我们可以解决许多与整除有关的问题。

例1. 在853后面补上3个数字组成一个六位数,使这个六位数能同时被 3,4,5整除。这样的六位数中最大的是多少?

解题思路:因为3,4,5两两互质,所以853□□□末两位可以是20,40,60,80,00,再根据能被3整除的数的特征,8+5+3+9+8+0=33,这个数最大是853980。

解:这样的六位数中最大的是853980。 做练习题。

例2.判断34101能不能被7或11或13整除。

解题思路:根据能被7,11,13整除的数的特征,用末三位101减去末三位前面的数34,即101-34=67,看这个差能不能被7、11、13整除就可以判断出34101能不能被7、11、13整除。

解:101-34=67 67不能被7整除,所以34101不能被7整除。67不能被11整除,所以34101不能被11整除。67不能被13整除,所以34101不能被13整除。

例3.由4,5,6三张数字卡片能组成多少个能被2整除的三位数?

解题思路:卡片6可以看成9,所以能被2整除的有564,654,594,954,456,546。

解:6个。

总结:我们要牢记能被n个特殊数整除的特征,归纳出一般性的规律。 (1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能

被2整除。

(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。

(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。

(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。

(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。

(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。

练习:1.用0,1,2,3,4,5这六个数码组成的没有重复数字的两位数中,能被5整除的有几个?能被2整除的有几个?能被10整除的有几个?

2.42□28□是99的倍数,这个数除以99所得的商是多少? 3.五位数

能被72整除,问:A与B各代表什么数字?

4. 七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。

5.学校买了72只小足球,发票上的总价有两个数字已经辨认不清,只看到是□67.9□元,你知道每只小足球多少钱吗?

6.某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是多少?

比一比.在一个两位数中间插入一个数字,就变成了一个三位数。如52中间插入4后变成542。有些两位数中间插入某个数字后变成的三位数,是原两位数的9倍。这样的两位数共有多少个?

1. 解:有9个能被5整除;有13个能被2整除;有5个能被10整除。 2.讲析:能被99整除的数,一定能被9和11整除。 设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。

又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。经验证,(b-a-8)是11的倍数不合。 所以a-b=3。

又a+b=2或11,可求得a=7,b=4。

从而很容易求出商为427284÷99=4316。

3.解:已知

能被72整除。因为72=8×9,8和9是互质数,所以

能被8

既能被8整除,又能被9整除。根据能被8整除的数的特征,要求

整除,由此可确定B=6。再根据能被9整除的数的特征,的各位数字之和为A+3+2+9+B=A+3-f-2+9+6=A+20,

在这个范围内只有27能被9整除,所以A=7。

4.讲析:设千位上和个位上的数字分别是a和b。则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。

要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。 则有 b-a=8,或者a-b=3。 ①当 b-a=8时,b可取9、8;

②当 a-b=3时,b可取6、5、4、3、2、1、0。

所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。

5.解:367.92/72=5.11(元)

6.讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。而1993000÷2520=790余2200。于是再加上(2520-2200)=320时,就可以了。所以最后三位数字依次是3、2、0。


数的整除(能被7、9、11、13整除的数的特征)专题训练.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:湖南工业大学2012级大学计算基础网上作业固定题目答案

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: