概率论与数理统计(刘建亚)习题解答——第二章
2-1 解:
不能。因为 (1)P(X1??1)??0.5?0;(2)?P(X2?xi)?0.85?0。 2-2 解:
X P 3 1/10 4 3/10 5 6/10
2-3 解:
4取法:n?C5,X的取值:0,1,2,3。所以 4?kC3k?C12P(X?k)?4C15(k?0,1,2,3),分布列为
X P 0 33/91 1 44/91 2 66/455 3 4/455 2-4 解:
由概率的规范性性质 (1)?P(X?k)??k?1?k?1?NN?P(X?k)?1,得:
a?a?1;∴ a?1。 N(2)?P(X?k)??k?1a?a?1;∴ a?1。 kk?12 2-5 解:
3?1? P(X?k)????4?4?k?1(k?1,2,??)
2n?13?1? P(X?2n)????4?4?
(n?1,2,??)
1
3??1? P(X?偶数)??P(X?2n)????4k?1?4?k?1?2n?11314??? 245?1?1????4?
2-6 解:
X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 P(X?4)?
2-7 解:n重贝努利试验,X~B(20,0.1) 解法一:
3(1)P(X?3)?C20p3(1?p)17?0.1901;
16P(7?X?10)?1。 2(2)P(X?3)?1?P(X?2)?1?P(X?0)?P(X?1)?P(X?2)?0.3231; (3)最可能值:k?[(n?1)?0.1]?2;P(X?2)?0.2852。 解法二:利用泊松定理,P(X?k)?23?2e?0.1804; (1)P(X?3)?3!?kk!?e??(k?0,1,??),??np?20?0.1?2
(2)P(X?3)?1?P(X?2)?1?P(X?0)?P(X?1)?P(X?2)?0.3233 (3)最可能值:k?[(n?1)?0.1]?2;P(X?2)?0.2707
2-8 解: X~B(n,p),n?730?10,p?1?0.1,令 ??np?2 365 由泊松定理知 P(X?k)??kk!?e??(k?0,1,??)
P(X?2)?1?P(X?1)?1?3e?2?0.594。0
2
2-9 解:
X~B(20,0.2),P(X?k)?Ck10pk(1?p)10?k(k?0,1,??)
P(X?4)?1?P(X?3)?0.1209。
2-10 解:
X~B(100,0.01),∵n?100?10,p?0.01?0.1??np?1
近似看作 X~P(?),设同时出现故障的设备数为X,N为需要的维修工数,由题意P(X?N)?0.01,故
Nk?P(X?N)?1?P(X?N)?1????k??k?0k!e???k??N?1k!e?0.01
查泊松分布表得 N+1=5,即 N=4。 2-11 解:
X~B(50000,0.0001)??np?5
泊松定理知 Pn(X?k)??kk!?e???5k?5k!?e(k?0,1,??)
P(X?0)?50?0!?e5?6.738?10?3
P(X?5)?1?P(X?5)?1????k???0.5595。
k?5k!e?1 2-12 解:
X~P(?)??4
?(1)P(X?8)?P(X?8)?P(X?9)???k???k??k?8k!e???k?9k!e?0.0297
?(2)P(X?10)???k??k!e?0.00284
k?11
3
2-13 解:
(1) 由概率的规范性 1??f(x)dx??cxdx???0??11c,得 c=2; 2(2) P(0.3?X?0.7)??2xdx?0.4;
0.30.7(3) 由题意知 对0?a?1 有
?a0 2xdx??2xdxa1 得 a2?1?a2 ∴ a?12 (4) 分布函数定义式:F(x)??f(t)dt
??x当 x?0 时, F(x)?0 ;
当 0?x?1 时, F(x)?0??2tdt?x2;
2x当 x?1 时, F(x)?1
?0?∴ F(x)??x2?1?x?00?x?1 x?1
2-14 解:
(1) 由概率的规范性,1??f(x)dx??????Adx?Aarctgx??1?x2???????A?
∴ A?1? (2) P(X?1)?
2-15 解:由概率的规范性
1??f(x)dx??????111??1dx?(?)? 2??1?1?x?44211c1?x20dxx?sint????22cdt?c? ∴ c?1?
1111??1P(X?)??21?dx?(?)?
??2?6631?x22 2-16 解:
(1)当 x?0 时, f(x)?F'(x)?0 ;
4
1当 x?0 时, f(x)?F'(x)?e?x;
当 x?0 时, F'(x)存在,且F'(0)?0,?f(0)?0
?e?x f(x)???0x?0 x?0(2)P(X?4)?F(4)?1?e?4,P(X?1)?1?P(X?1)?1?F(1)?e?1 2-17 解:
X~e(?)??0.1
(1)P(X?10)??0.1e?0.1xdx?e?1?0?0.36788
10??(2)P(10?X?20)??0.1e?0.1xdx?e?1?e?2?0.2325
1020 2-18 解:
X~N(160,0.062) (0.05?0.12)???2?
P(X?0.05?0.12)?1?P(X???2?)?1?P(??2??X???2?)?1?0.9545?0.0455
22-19 解:X~N(160,?0)
P(120?X?200)??(??(40200???0120??)??()?040?0)??(?40?0)?2?(40
?0)?1?0.8?(?0)?0.9,查表得
40?0?1.28 得 ?0?31.25
2-20 证明:
P(??k??X???k?)??(??k?????k???)??()??5
??(k)??(-k)??(k)?[1??(k)]?2?(k)?1
2-21 解:
由条件 P(X?c)?P(X?c) 得
P(X?c)?1?P(X?c)?1?P(X?c),∴ P(X?c)?0.5,
已知 X~N(3,22),图形关于x??(?3)轴对称,即P(X??)?0.5 ∴ x???3
2-22 证明:
∵ X服从几何分布,∴ P(X?k)?qk?1p(q?1?p,k?1,2,??) qn?k?1p?1?p(1?q??qn?1)
P(X?n?k)P(X?n?k|X?n)??P(X?n)?p?qk?1p?P(X?k)n1?q1?p1?qqn?k?1qn?k?1p1??qk?1pk?1n2-23 略。
2-24 解: (1)
Y=2X+1 -3 -1 1/5 1 1/4 3 1/4 5 1/5 P(Y=yi) 1/10 (2)
Y=X2 P(Y=yi) 2-25 解:
?1f(x)???00?x?1其它0 1/4 1 9/20 4 3/10
6
y??2lnx,(0?x?1)?x?g(y)?e,(0?y???),1?2?1[g(y)]??e2y?1?2?e∴ ?(y)??2?0??1?y2y
y?0y?0
2-26 解:
?1?f(x)??6??00?x?6其它
11(1?1)? 63当 0?y?3时,x?3??y?[g?1(y)]'??1??(y)?当 y为其它时,?(y)?0,综合得
?1??(y)??3??0 2-27 解:
0?y?3其它
(1)y?2x2?1?(y?1)g?1(y)??12??y?14y?11[g?1(y)]'?? 222(y?1)∴ 当y?1时 ?(y)?ey?1???111?e4 ?????22(y?1)22(y?1)??2?(y?1)当y?1时 ?(y)?0, 综上得
y?1??1e4??(y)??2?(y?1)??0y?1y?1
(2)y?x?(y?0)g?1(y)??y,[g?1(y)]'??1
∴ 当y?0时 ?(y)?12?e?y22(1?1)?2?e?y22
当y?0时 ?(y)?0, 综上得
7
?2?y?e2?(y)????0?2y?0y?0
另一解法:
?P(?y?X?y)FY(y)?P(Y?y)?P(X?y)???0 而 P(?y?X?y)??yy?0 y?0y?y1fX(x)dx?2?2?y?ye?x22dx???20e?x22dx
?2?y?e2' ∴ fY(y)?FY(y)????0?y?0y?0
2-28 解:
当 k?4n?1时,Y=1;当k?4n?2或k?4n时,Y=0;当k?4n?3时,Y=-1。 ∴ P(Y??1)??P(X?4n?1)??n?1n?1???124n?1?2 15? P(Y?0)??[P(X?4n?2)?P(X?4n)]??[n?1n?12?4n?2111 ]?n423 P(Y?1)??P(X?4n?3)??n?1n?1??124n?3?8 15Y的分布列:
Y P
2-29 略。
-1 2/15 0 1/3 1 8/15 8