高数竞赛习题
例1(1)?xx(1?lnx)dx??exlnx(1?lnx)dx??exlnxd(xlnx)?exlnx?C?xx?C (2)
?ln(x?1?x2)ln(x?1?x2)1?x2dx??1?x2dx ??lnx(?1?x2)dlnx(?1?x2)
?2?ln(x?1?x2)?323?C
(3)
?lntanxsin2xdx??lntanx2sinxcosxdx??12lntanxdlntanx?14(lntanx)2?C (4)?sin2x2sinxcosxdcos2x21?cos4xdx??1?(cos2x)2dx??1?(cos2x)2?arctan(cosx)?C (5)
?x?x21?x2e1dx??e1?x2d1?x2?e1?x2?C
、(1)(06年真题) ?1?x4?x8例2x(1?x8)dx
1?x4?x81?x4x8解:(法一)?x(1?x8)dx??x(1?x8)dx??x(1?x8)dx ??1x71?x4?x4x7 x(1?x4)dx??1?x8dx??x(1?x4)dx??1?x8dx ??1x3x7xdx??1?x4dx??1?x8dx ?lnx?14ln1?x4?18ln1?x8?C (法二) ?1?x4?x8x(1?x8)dx??1?x8?x4?2x81x3x(1?x8)dx??xdx??1?x8dx??2x71?x8dx 而 ?x3x31x3 1x3 1?x8dx??(1?x4)(1?x4)dx?2?1?x4dx?2?1?x4dx ??1d8?(1?x4)1?x4?18?d(x4?1)1?x4?11?x48ln|1?x4|?C
1
1?x4?x811?x41 从而 ?dx?ln|x|?ln||?ln|1?x8|?C 84x(1?x)81?x4 ?lnx?11ln1?x4?ln1?x8?C 48e2xe2x?ex?exd(1?ex)xxxdx?dx?edx??e?ln(1?e)?C (2)?xxx???1?e1?e1?e(3)(07年的真题)求
?x9x?15dx
解:
?31x51x5?1?1525255dx??dx?(x?1)2?x?1?C dx??55555155x?1x?1x?1x9ln2xdx?ln4x?x
ln2xdxln2xlnx?ln2??dlnx??ln4xx?ln4x?lnx?ln4dlnx
lnx?ln2?ln4?ln411dlnx??dlnx?ln??d(lnx?ln4) ??lnx?ln42lnx?ln4(4)(资料中的发挥题)求
?lnx?ln2?ln|ln4x|?C
11d(x?)2x?1221xx例3、?4dx??dx???arctan(x?)?C
11x?122xx2?2(x?)2?2xx1111?d(x?)x??22x2?11xxx?C ?x4?1dx??21dx??12?22ln1x?2(x?)?2x??2xxx21?x21?x2?1x2?1? ?4 dx???4d?x?4d?xx?12?x?1x?1?1x??21111x ?arctan(x?)?ln?C
1x42x??2222x11?x2?1x2?1? ?4dx???4dx??4dx?
x?12?x?1x?1?1x??21111x ?arctan(x?)?ln?C
1x42x??2222x
2
(03年 真题)
???02??x?1?x21???x2?1dx???dx??dx? 444001?x2?1?x1?x?1x??2111??1x ?arctan(x?)0?lnx22242x?1?2??0?2? 4x例4 (1)
?11?sinxdx??1?sinx1?sinx(1?sinx)(1?sinx)dx??cos2xdx?tanx?secx?C
(类似地,求
?11?cosxdx,?111?cosxdx,?1?sinxdx等)
(2)?x?1(x?1)exd(xex )x(1?xex)dx??xex(1?xex)dx??xex(1?xex) ??d(xex)d(xex??xex)xex xex?1?lnxex?1?C (4)?1?x1?xdx??1?x1?x2dx?arcsinx?1?x2?C
*例5 若I?1sts?0f(t?xs)dx(s?0,t?0),则I之值( C ) (A)依赖于s,t,x (B)依赖于s,t (C)只依赖于t (D)依赖于s,x
解: 令u?t?x1stx2ts,则x?su?st,I?s?0f(t?s)dx??tf(u)du
例5(1)(资料中的发挥题)计算?1ln(1?x)01?x2dx 解:换元x?tant, 则 ?1ln(1?x)?ln(1?tan?01?x2dx??4t)0sec2tdtant??40lntantdt 再令t??4?u,有
???4ln(1?tant)dt??4ln(1?tan(??1?tanu004?u))du??40ln(1?1?tanu)du
? ??42??0ln1?tanudu??40ln2du??40ln(1?tanu)du 从而 ?1ln(1?x)?01?x2dx??40ln(1?tant)dt=?8ln2 3
(2)(07经管类真题)
???dx0(1?x2)(1?x?)(??0) x?1 解:I????dxtt?dt??t??10(1?x2)(1?x?)????0(1?t2)(1?t?)???10(1?t2)(1?t?)dt ????11?t2dt????1???00(1?t2)(1?t?)dt?arctant|0?I?2?I 移项解得 I????dx0(1?x2)(1?x?)??4 ?*(2)(05年数学类真题)计算
?2dx01?tan2005x ?解:令tanx?t 则
?2dx01?tan2005x????dt0(1?t2)(1?t2005) x?12005I????dxtdtt2005?1?10(1?x2)(1?x2005)????t??0(1?t2)(1?t2005)??0(1?t2)(1?t2005)dt ????1??01?t2dt??10(1?t2)(1?t2005)dt?arctant|??0?I??2?I 移项解得 I???dx4,从而
?2??01?tan2005x??dt0(1?t2)(1?t2005)??4
(3)(首届高数竞赛真题) :证明:
?2?0sin(x2)dx?0
2证明:
?2?20sin(x)dxt??x?2?sint?sint202tdt??02tdt???sint?2tdt
而
?2?sintt?u??2tdt?????siun02u??du
从而 原式=
??t0(sin2t?sint2t??)dt?0 ?99例6(1)计算
?2sinx?cosx01?7sinxcosxdx
?9解:
?2sin9x?cos9x?sin?01?7sinxcosxdx??2x2cos9x01?7sinxcosxdx??01?7sinxcosxdx 4
而
??02cosxdx?1?7sinxcosx9t??x2???02sin9tdt
1?7costsint 从而
??02??sin9x?cos9xsin9xcos9x22dx??dx??dx?0
001?7sinxcosx1?7sinxcosx1?7sinxcosx?0(2)(04 年真题)计算
???cosxdx 2x??x?2004t??x2解:
??0??cosxdx?x2??x?2004????sintdt ???2?2?(?t)??(?t)?20042?22??2????sintt2?2004??2?24dt??2???t2?2004??2?24?20dt??2??sintt2?2004?2?24dt
? ?2?202?tarctandt?0??2aa2t?2004?4??2?2004??2arctan?22004??2
44(3)(资料中的发挥题)计算
????0xsinxdx 21?cosx(?t)cost?xsinx22dx?解:????21?sin2tdt 01?cos2xt??x2??tcostdsint222dt?dt??dt?0 ??????01?sin2t?1?sin2t?1?sin2t222??cost??20?) ??arctan(tsin?24
xex1xexxexexxxx 例7(1)* ?dx???xed????edx???e??C 21?x1?x1?x1?x(1?x)1exexdx?a 求? (2)(资料中的发挥题)设?dx 01?x0(1?x)21x11eex1ex1exdx??ed??dx??0(1?x)2?01?x1?x0?01?x2?1?a 1 5