2010年江苏省普通高校“专转本”统一考试
高等数学参考答案
1、A 2、C 3、B 4、D 5、D 6、C 7、e 8、2
29、
? 10、?4 11、dx?2dy 12、(?1,1] 2x?tanxx?tanx1?sec2x?tan2x1?lim?lim?lim??13、原式=lim2.
x?0xtanxx?0x?0x?03x33x23x2dydydy2?ex?yd2y9ex?yx?y14、 ?e(1?)?2,?;??dxdxdx1?ex?ydx2(1?ex?y)315、原式?1211xarctanx?x?arctanx?C. 222t2?116、变量替换:令2x?1?t,x?,dx?tdt,
2t2?1?3233t5153282?tdt??(?)dt?(t3?t)?原式?? 11t226213?????ijk17、n1?(1,2,3),n2?(2,0,?1),n?n1?n2?123?(?2,7,?4),
20?1所求直线方程为
x?1y?1z?1?? ?27?4?z?2z2''x''''?y(f1y?f2e);18、 ?3y2f1'+2exyf2'?xy3f11?xy2exf12?x?x?y19、
??xdxdy??D200dy?1?y2yxdx?2 6220、特征方程的两个根为r1?1,r2??2,特征方程为r?r?2?0,从而p?1,q??2;
??1是特征方程的单根,p(x)?1,可设Q(x)?Ax,即设特解为Y?Axex,
Y'?Aex?Axex,Y''?2Aex?Axex,p?1,q??2,代入方程y\?py'?qy?ex得
(2A?Ax?A?Ax?2A)ex?ex,3A?1,A?11x?2x?x ,通解为y?C1e?C2e33第 1 页 共 2 页
21、构造函数f(x)?ex?1?121x?,f'(x)?ex?1?x,f''(x)?ex?1?1?0,f'(x)在(1,??)22上单调递增,f'(1)?0,f'(x)?0,f(x)在(1,??)上单调递增,f(1)?0,f(x)?0,即
ex?1?121x?。 2222、limf(x)?limx?0x?0?(x)xx?0?(x)?1f(x)?f(0)?(x)?x?'(x)?11?'(x)??'(0)'xf(0)?lim?lim?lim?lim?lim2x?0x?0x?0x?0x?0x2x2x?0x?0x11?lim?''(x)??''(0),可导性得证。 2x?02a45222223、V1(a)???[(a)?(x)]dx??a,
05114V2(a)???[(x2)2?(a2)2]dx?(?a4?a5)?,
a5518V(a)?V1(a)?V2(a)?(?a4?a5)?,
55113V'(a)?(8a4?4a3)?,令V'(a)?0得a?,最小值为V()??
2216x?0?lim?(x)??(0)??'(0)?1?f(0),连续性得证;
?dxdxx?x2xx?x24、f(x)?e?(2ee?dx?C)?e(e?C)?e?Ce,
?f(0)?2,C?1,f(x)?ex?e?x,f'(x)?ex?e?x,
f'(x)ex?e?xe2x?1e2x?1?22, y??x???1?f(x)e?e?xe2x?1e2x?1e2x?12xttet22?1?e2xe2xA(t)??(1?(1?2x))dx??2xdx??d2x??1?2xd2x
00e00e?1?1e2x?1e?1t1e2t2x2t2t2t?2t??2xd(e?1)?2t?ln(e?1)?ln2?lne?ln(e?1)?ln2?ln?ln2, 2t0e?11?ete2t?ln2)?ln2 从而limA(t)?lim(lnt???t???1?e2t
第 2 页 共 2 页