全等三角形分级练习-第五级-K型图与旋转

2018-11-30 20:31

全等三角形分级练习(第五级/共六级)

全等三角形分级训练要求:

第五级:直线的垂直关系是初中阶段最重要的线与线之间的关系,利用互余找相等的角是证明三角形全等、相似时重要的知识技能。在做题是找准“桥梁”,利用“同角或等角的余角相等”这个判定,就能够得出需要的结论。

1. 三垂直 基本图形

(1)K型图 K型图是最重要的几何模型之一,在证明三角形全等、相似,求点的坐标时有着重要的应用

如图,已知AC⊥CF,EF⊥CF,AB⊥BE,AB=BE 求证:AC=BF,BC=EF

A E

CBF 图1

(2)K型图变化 将△ABC向右移动会出现下面两种情况 ①如图,已知,AC⊥CF,EF⊥CF,AB⊥CE,AC=CF 求证:AB=CE A

E

G CBF

②已知,AC⊥CF,EF⊥CF,AG⊥CE,AG=CE 求证:AG=CF

AE

(4)赵爽弦图

如图: 已知,AE⊥BD,CD⊥BD,∠ABC=90° AB=AC,求证:AE=BD ,BE=CD

A

BD E

C

2. 已知:如图,点B,C,E在同一条直线上,∠ B=∠E=60°,∠ACF=60°,且AB=CE 证明:△ACB≌△CFE

F (3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)

FFF D DGDC GCC EGlE1E D1D1ABABE1D1ABE1 图1 图2 图3 El

3.(2012江苏盐城25.10分)如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ACB外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.

(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;

(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;


全等三角形分级练习-第五级-K型图与旋转.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:日本语听力_第二版_入门篇_9-16课听力原文及答案

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: