统筹规划
知识点连接:统筹规划在许多领域中都在使用,在生活中有很多事情要去做的时候,科学的安排好先后顺序、场地问题等,能够提高我们的工作效率。主要涉及的问题有合理安排时间问题、排队问题、最短路线问题、场地设置问题等。 类型1:合理安排时间问题
例1:烙饼需要烙它的正、反面,如果烙熟一块饼的正、反面,各用去3分钟,那么用一次可容下2块饼的锅来烙21块饼,至少需要多少分钟?
练:一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎2009张饼需几分钟?
总结:烙饼问题中(当最多能煎两张饼,煎一面需要一分钟时),归纳出煎1、2、3张饼分别需要2、2、3分钟,煎4张饼需要4分钟,煎5张饼需要5分钟,煎N张饼则需要N分钟。
例2:星期天妈妈要做好多事情。擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。妈妈干完所有这些事情最少用多长时间?
练:小明在家的一面墙上贴奖状,一共有32张,给一张奖状涂满胶水需要2分钟,涂完胶水后要过2分钟才能往墙上贴,贴的过程需要1分钟,但是如果等待超过6分钟的话胶水就会干掉不能再贴,问:小明最快用多长时间能贴完所有的奖状?
练:小明骑在牛背上赶牛过河.共有甲、乙、丙、丁4头牛.甲牛过河需要1分钟,乙牛过河需要2分钟,丙牛过河需要5分钟,丁牛过河需要6分钟.每次只能赶两头牛过河,那么小明要把这4头牛都赶到对岸,最小要用多少分钟?
1
总结:例2这种类型题着重节省时间,提高效率,解答此类题可从逆向思考,找出是哪里浪费了时间,若不想浪费时间,应该如何做,找出解题关键。
类型2:排队问题
例:6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.现在只有这一个水龙头可用,问怎样安排这6人的打水次序,可使他们总的等候时间最短?这个最短时间是多少?
练:有甲、乙两个水龙头,6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.怎么安排这6个人打水,才能使他们等候的总时间最短,最短的时间是多少? 练:理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10、12、15、20和24分钟,怎样安排他们理发的顺序,才能使这五人理发和等候所用时间的总和最少?最少时间为多少? 练:设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,??.如此下去,当只有两个水龙头时,如何巧妙安排这十个人打水,使他们总的费时时间最少?最少的时间是多少?
总结:排队问题中,所用时间由两部分组成,一部分是工作时间,一部分是等待时间,为使总时间最少,需要尽量缩短等待时间,应让工作时间短的人先干,工作时间长的人后干。
类型3:最短线路问题
例:下图面是一张道路图,每段路上的数字是小王走这段路所需要的分钟数.小王从A出发走到B,最快要几分钟?
2
练:如图是一张道路图,每条路上的数是小王走这段路所需的时间(单位:分).小王从A到B,最快需要几分钟?
总结:两点之间线段最短,做出一条辅助线,然后找出辅助线附近的线路,最后衡量大小找出最短路程。
类型4:场地设置问题,合理安排场地
例1:有1993名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小?
例2:在一条公路上,每隔10千米有一座仓库(如图),共有五座,图中数字表示各仓库库存货物的重量.现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要运费 元,那么集中到哪个仓库运费最少?
30吨10吨10吨20吨60吨
ABCDE
练:在一条公路上,每隔100千米有一座仓库,共有8座,图中数字表示各仓库库存货物的重量(单位:吨),其中C、G为空仓库.现在要把所有的货物集中存入一个仓库里,如果每吨货物运输1千米需要 元,那么集中到那个仓库中运费最少,需要多少元运费?
练:一条直街上有5栋楼,从左到右编号为1,2,3,4,5,相邻两楼的距离都是50米.第1号楼有1名职工在A厂上班,第2号楼有2名职工在A厂上班??,第5号楼有5名职工在A厂上班.A厂计划在直街上建一通勤车站接送这5栋楼的职工上下班,为使这些职工到通勤车站所走的路程之和最小,车站应建在距1号楼多少米处?
3
练:有七个村庄A1,A2,?,A7 , 分布在公路两侧(见右图),由一些小路与公路相连,要在公路上设一个汽车站,要使汽车站到各村庄的距离和最小,车站应
A6设在哪里? A1A5 CDFB公路 E A2A7AA 43总结:对于集中货物的场地设置问题,涉及到了重量,而集中到何处起决定作用的是货物的重量,遵循“小往大处靠”“支往干上靠”的原则。
类型5:合理布线和调运问题
例:一个物流港有6个货站,用4辆同样的载重汽车经过这6个货站组织循环运输.每个货站所需要的装卸工人数如下图.为了节省人力,可安排流动的装卸工随车到任何一个货站装卸.在最优的安排下使物流港装卸工总人数最少,则是多少人?
练:山区有一个工厂.它的十个车间分散在一条环行的铁道上.四列货车在铁道上转圈运送货物。货车到了某一车间,就要有装卸工人装上或卸下货物.各车间由于工作 量不同,所需装卸工人数也不同,各车间所需装卸工人数如图所示。当然,装卸工可以固定在车间等车;也可以坐在货车上跟车到各车间去干活;也可以一部分装卸 工固定在车间,另一部分跟车.问怎样安排跟车人数和各车间固定人数,才能使装卸工的总人数最少?最少需多少名工人?
例:新建的自来水厂要给沿公路的十个村庄供应自来水(如下图,距离单位为千米),要安装水管有粗细两种选择,粗管足够供应所有村庄使用,细管只能供一个村用水,粗管每千米要用8000元,细管每千米要2000元,如果粗细管适当搭配,互相连接,可以降低费用,怎样安排才能使这项工程费用最低?费用是多少元? 自来水厂ABCDEFGHIJ 23052423225
练:有十个村庄,座落在从县城出发的一条公路上,现要安装水管,从县城供各村自来水.可以用粗、细两种水管,粗管每千米7000元,细管每千米2000元.粗管足够供应所有各村用水,细管只能供应一个村用水,各村与县城间距离如右图所示(图中单位是千米),现要求按最节约的方法铺设,总费用是多少?
30524232225县城
A14
A2A3A4A5A6A7AA89A10