2140,乙品种产量的方差为3250,试求这两个品种平均面积产量差的置信水平为0.95的置信上限和置信水平为0.90的置信下限。 程序代码:
two.sample.ci=function(x,y,conf.level=0.95,sigma1.sigma2) {options(digits=4) m=length(x); n=length(y) xbar=mean(x)-mean(y) alpha=1-conf.level
zstar=qnorm(1-alpha/2)*(sigma1/m+sigma2/n)^(1/2) xbar+c(-zstar, +zstar) }
x=c(628,583,510,554,612,523,530,615,573,603,334,564) y=c(535,433,398,470,567,480,498,560,503,426,338,547) sigma1=2140 sigma2=3250
two.sample.ci(x,y,conf.level=0.95,sigma1.sigma2) 得到结果:31.29 114.37
程序代码:
two.sample.ci=function(x,y,conf.level=0.95,sigma1.sigma2) {options(digits=4) m=length(x); n=length(y) xbar=mean(x)-mean(y)
alpha=1-conf.level
zstar=qnorm(1-alpha/2)*(sigma1/m+sigma2/n)^(1/2) xbar+c(-zstar, +zstar) }
x=c(628,583,510,554,612,523,530,615,573,603,334,564) y=c(535,433,398,470,567,480,498,560,503,426,338,547) sigma1=2140 sigma2=3250
two.sample.ci(x,y,conf.level=0.90,sigma1.sigma2) 得到结果:37.97 107.69
5.6有两台机床生产同一型号的滚珠,根据以往经验知,这两台机床生产的滚珠直径都服从正态分布,现分别从这两台机床生产的滚珠中随机地抽取7个和9个,测得它们的直径如下: 机床甲:15.2 14.5 15.5 14.8 15.1 15.6 14.7 机床乙:15.2 15.0 14.8 15.2 15 14.9 15.1 14.8 15.3
试问机床乙生产的滚珠的方差是否比机床甲生产的滚珠直径的方差小? 程序代码:
x=c(5.2,14.5,15.5,14.8,15.1,15.6,14.7)
y=c(15.2,15.0,14.8,15.2,15,14.9,15.1,14.8,15.3) var.test(x,y) 得出结果:
F test to compare two variances data: x and y
F = 430.1, num df = 6, denom df = 8, p-value = 2.723e-09 alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval: 92.47 2408.54 sample estimates: ratio of variances 430.1
由结果可得:其甲机床的滚珠半径远超出乙机床的滚珠半径
5.7某公司对本公司生产的两种自行车型号A,B的销售情况进行了了解,随机选取了400人询问他们对A B的选择,其中有224人喜欢A,试求顾客中喜欢A的人数比例p的置信水平为0.99的区间估计。 方程代码:
Binom.test(224,400,conf.level=0.99) 得出结果:
data: 224 and 400
number of successes = 224, number of trials = 400, p-value = 0.01866
Exact binomial test
alternative hypothesis: true probability of success is not equal to 0.5
99 percent confidence interval: 0.4944077 0.6241356 sample estimates: probability of success 0.56
由结果可得:顾客中喜欢a的人数比例p的置信水平为0.99的区间估计:[0.4944077 0.6241356]
5.8某公司生产了一批新产品,产品总体服从正态分布,现估计这批产品的平均重量,最大允许误差为1,样本标准差s=10,试问在0.95的置信水平下至少要抽取多少个产品 程序代码:
Size,norm2=function(s,alpha,d,m) {t0=qt(alpha/2,m,lower.tail = FALSE) n0=(t0*s/d)^2
t1=qt(alpha/2,n0,lower.tail = FALSE) n1=(t1*s/d)^2
while(abs(n1-n0)>0.5){
n0=(qt(alpha/2,n1,lower.tail = FALSE)*s/d)^2 n1=(qt(alpha/2,n0,lower.tail = FALSE)*s/d)^2 }
n1 }
Size.norm2(10,0.01,2,100) 得出结果:98.44268
由结果可得,在0.95的置信水平下至少要抽取99个产品
5.9根据以往的经验,船运大量玻璃器皿,损坏率不超过5%,现要估计某船中玻璃器皿的损坏率,要求估计与真值间不超过1%,且置信水平为0.90,那么要抽取多少样本验收可满足上诉要求 程序代码:
size.bin=function(d,p,conf.level){ alpha=1-conf.level
((qnorm(1-alpha/2))/d)^2*p*(1-p) }
size.bin(0.01,0.05,0.90) 得出结果: 1285.133
由结果可得:要抽取1285个样本验收可满足上诉要求