零死角玩转STM32—F429下载验证
编译程序下载到实验板,并上电复位,液晶屏会显示出触摸画板的界面,点击屏幕可以在该界面画出简单的图形。29.4每课一问
1、为什么使用电阻式触摸屏需要校准,而电容式触摸屏不需要校准。答:电阻屏是通过检测触点处的电压来确定位置的,电压受到电阻材料的影响,而生产中不同批次的电阻材料可能会有偏差,因此需要先定位几个点来确定屏幕的偏移量(也就是校准),以后通过校准得来的偏移量调整坐标输出,才能准确通过电压反映坐标。而电容屏是直接由多个电容组成的矩阵,检测时可获知整个电容矩阵中哪些电容发生了改变,而且各个电容在生产时就确认了它在触摸屏中的坐标,所以只要获知哪些电容发生了变化,就可直接得出触点位置,无须校准。第441页共996
零死角玩转STM32—F429第30章ADC—电压采集
本章参考资料:《STM32F4xx中文参考手册》ADC章节。学习本章时,配合《STM32F4xx中文参考手册》ADC章节一起阅读,效果会更佳,特别是涉及到寄存器说明的部分。30.1ADC简介
STM32F429IGT6有3个ADC,每个ADC有12位、10位、8位和6位可选,每个ADC有16个外部通道。另外还有两个内部ADC源和VBAT通道挂在ADC1上。ADC具有独立模式、双重模式和三重模式,对于不同AD转换要求几乎都有合适的模式可选。ADC功能非常强大,具体的我们在功能框图中分析每个部分的功能。第442页共996
零死角玩转STM32—F42930.2ADC功能框图剖析
图30-1单个ADC功能框图掌握了ADC的功能框图,就可以对ADC有一个整体的把握,在编程的时候可以做到了然如胸,不会一知半解。框图讲解采用从左到右的方式,跟ADC采集数据,转换数据,传输数据的方向大概一致。第443页共996
零死角玩转STM32—F4291.①电压输入范围
ADC输入范围为:VREF-≤VIN≤VREF+。由VREF-、VREF+、VDDA、VSSA、这四个外部引脚决定。我们在设计原理图的时候一般把VSSA和VREF-接地,把VREF+和VDDA接3V3,得到ADC的输入电压范围为:0~3.3V。如果我们想让输入的电压范围变宽,去到可以测试负电压或者更高的正电压,我们可以在外部加一个电压调理电路,把需要转换的电压抬升或者降压到0~3.3V,这样ADC就可以测量了。2.②输入通道
我们确定好ADC输入电压之后,那么电压怎么输入到ADC?这里我们引入通道的概念,STM32的ADC多达19个通道,其中外部的16个通道就是框图中的ADCx_IN0、ADCx_IN1...ADCx_IN5。这16个通道对应着不同的IO口,具体是哪一个IO口可以从手册查询到。其中ADC1/2/3还有内部通道:ADC1的通道ADC1_IN16连接到内部的VSS,通道ADC1_IN17连接到了内部参考电压VREFINT连接,通道ADC1_IN18连接到了芯片内部的温度传感器或者备用电源VBAT。ADC2和ADC3的通道16、17、18全部连接到了内部的VSS。图30-2STM32F429IGT6ADC通道外部的16个通道在转换的时候又分为规则通道和注入通道,其中规则通道最多有16路,注入通道最多有4路。那这两个通道有什么区别?在什么时候使用?第444页共996
零死角玩转STM32—F429规则通道规则通道:顾名思意,规则通道就是很规矩的意思,我们平时一般使用的就是这个通道,或者应该说我们用到的都是这个通道,没有什么特别要注意的可讲。注入通道注入,可以理解为插入,插队的意思,是一种不安分的通道。它是一种在规则通道转换的时候强行插入要转换的一种。如果在规则通道转换过程中,有注入通道插队,那么就要先转换完注入通道,等注入通道转换完成后,再回到规则通道的转换流程。这点跟中断程序很像,都是不安分的主。所以,注入通道只有在规则通道存在时才会出现。3.③转换顺序
规则序列规则序列寄存器有3个,分别为SQR3、SQR2、SQR1。SQR3控制着规则序列中的第一个到第六个转换,对应的位为:SQ1[4:0]~SQ6[4:0],第一次转换的是位4:0SQ1[4:0],如果通道16想第一次转换,那么在SQ1[4:0]写16即可。SQR2控制着规则序列中的第7到第12个转换,对应的位为:SQ7[4:0]~SQ12[4:0],如果通道1想第8个转换,则SQ8[4:0]写1即可。SQR1控制着规则序列中的第13到第16个转换,对应位为:SQ13[4:0]~SQ16[4:0],如果通道6想第10个转换,则SQ10[4:0]写6即可。具体使用多少个通道,由SQR1的位L[3:0]决定,最多16个通道。图30-3规则序列寄存器第445页共996