技术,与传统测序技术相比,它的突出优点是整个检测过程快速高效。由于探针阵列具有高度的序列多样性,它可以同时对大量基因、乃至整个基因组进行扫描分析,从而能够使人们从一个更高的层次来全面研究基因的功能,分析不同基因之间的生物相关性 这些是传统的序列分析技术所无法企及的。随着这项技术的广泛应用,将会给分子生物学的发展带来深远的影响,特别是将在以研究基因定位和基因功能为主的后基因组计划中发挥越来越太的作用。 DNA 芯片是生物芯片的一种,也称为微阵列(Microarray),是指由大量探针按一定的顺序排列在固相载体表面而形成的探针阵列,目前DNA 芯片主要包括eDNA 芯片和寡核苷酸芯片。探针阵列的合成目前主要有两种方式:(1)离片合成法(Off-Chip Synthesis);(2)在片/原位合成法(On—Chip/in situ Synthesis)。DNA 芯片是通过核酸杂交原理来进行序列分析的,将标过的未知序列与芯片上的探针阵列进行杂交,严格控制反应条件,如靶序列浓度、杂交温度及缓冲溶液浓度等,那么与靶序列完全互补的探针显示比较强的杂交信号,利用高分辨率的检测装置检测出完全互补的探针,经过计算机系统分析处理,即可确定待测序列。 DNA 芯片可广泛应用于涉及DNA 序列分析的众多研究领域。目前DNA芯片技术主要应用于比较分析特定基因的遗传多样性,检测多态性位点用于基因定位,检测突变位点诊断遗传病,监测基因的表达水平,DNA 测序以及进行其它的序列比较等方面的研究。1 检测多态性/突变位点利用DNA芯片技术,可以同时检测众多基因乃
至整个基因组的多态性/突变位点。在用寡核苷酸芯片扫描分析特定基因时,针对不同的检测目的,可以设计台成出不同形式的探针阵列,将待分析序列与这四个探针同时杂交,严格控制杂交条件,那么完全互补探针的杂交信号最强,从而可以确定位点;2 DNA 测序SBH(Sequencing by Hybridizati0n)法是近年来提出的一种新的DNA 测序方法,它用一系列较短的已知序列的寡核苷酸探针,与较长的待分析序列杂交,寻找其互补序列,根据杂交结果分析待测DNA 序列。
人类基因组计划的实施,对现代分析科学提出了严峻挑战,同时也给分析科学的发展带来了巨大的机遇,促进了分析科学与众多相关学科的渗透融合。DNA芯片技术正是在此基础上发展起来的一种全新的DNA 序列分析技术,这一技术已在分子生物学的许多研究领域显示了巨大的潜力和诱人的应用前景。目前DNA 芯片技术的研究与应用正处在一个迅猛发展、日趋完善阶段,在不断拓展其新的应用领域的同时,还需要进一步提高探针阵列的合成密度以及检测系统的分辨率与灵敏度,更重要的是要使这项技术逐步实现常规化与自动化。随着这一技术的逐步完善与广泛应用,将会在二十一世纪的分子生物学中发挥更大的作用。
质谱及隐马尔可夫模型在肽和蛋白质序列分析中的应用
了解肽和蛋白质的序列对理解其功能具有重要意义,测定其序
列也是当前生命科学研究中的重要内容之一.质谱作为高灵敏度的测定分子结构的仪器,其高灵敏度、广泛的适用性及快速性等特性
使它具有很大潜力发展成为辅助传统测序方法的新方法,并得到了广泛的关注.肽和蛋白质序列的质谱测定方法质谱用于肽和蛋白质的序列测定主要可以分为三种方法.一种方法叫蛋白图谱(protein mapping),即用特异性的酶解或化学水解的方法将蛋白切成小的片段,然后用质谱检测各产物肽分子量,将所得到的肽谱数据输入数据库,搜索与之相对应的已知蛋白,从而获取待测蛋白序列;第二种方法是利用待测分子在电离及飞行过程中产生的亚稳离子,通过分析相邻同组类型峰的质量差,识别相应的氨基酸残基.其中亚 稳离子碎裂包括“自身”碎裂及外界作用诱导碎裂;第三种方法与FAman法有相似之处,即用化学探针或酶解使蛋白或肽从N端或c端逐一降解下氨基酸残基,形成相互间差一个氨基酸残基的系列肽,名为梯状测序(1adder sequencing),经质谱检测,由相邻峰的质量差知道相应氨基酸残基.
隐马尔可夫模型(Hidden Markov model,HMM)用于蛋白质研究是生物信息学研究的新领域。目前,人们已经得到大量的蛋白质序列和结构数据,传统研究蛋白质的方法已经不再实用,生物学家已经转向能够处理大量数据的统计方法来进行研究。隐马尔可夫模型可以通过训练,识别同一特征的蛋白质序列。从SCOP数据库中选择了一个蛋白质族,由它得到了能够代表该族特征的隐马尔可夫模型,并用该模型对一些蛋白质序列进行分析。隐马尔可夫模型(Hidden Markov model,HMM)用于蛋白质研究是生物信息学研究的新领域,它的基础是计算机技术、统计学和分子生物学。HMM 可
被用于蛋白质同源性的研究。它由相互关联的两个随机过程共同描述信号的统计特性,其中一个是隐蔽的(不可观测的)具有有限状态的Markov链,另一个是与Markov链的每一状态相关联的观察结果的随机过程。隐Markov链的特征要靠可观测到的信号揭示。编码蛋白质的原始DNA 序列,在生物的进化过程中,会受到自然环境和各种因素的影响,使翻译出的蛋白质序列经历突变,遗失,或引入外源序列等变化,最后按不同的进化路径分化,形成多种功能相近的蛋白质。因此,可以把这些蛋白质看作由一个基本蛋白质序列经过插入,删除或替换了某些氨基酸残基而形成的。这个过程可以用HMM 来表示。HMM 可以用于已知一级结构进行蛋白质的分类,并且有较好的效果,是对其它预测和分类方法的补充。若结合各种蛋白质结构数据库,会产生更准确的预测结果。但它也存在一些缺陷,使得它用于结构分析方面有一定的不足。
结束语 核酸/蛋白质序列分析只是计算机在生物工程方面的应用,随着社会科技的发展,计算机与人们的日常生活和工作联系越来越密切,只有善于利用计算机的人,才能走在时代的前方。
参考文献
1.基于PC/Linux的核酸序列分析系统的构建及其应用 张成岗[1] 欧阳曙光[2] 生物化学与生物物理进展-2001年2期 2. 基于WWW与UNIX的核酸序列分析实用软件的开发 黄弋[1] 顾健人[2] 遗传学报-2001年3期
3. Clustal W—蛋白质与核酸序列分析软件 郭崇志 孙曼霁 生物技术通讯-2000年2期
4. 液相色谱与串联质谱偶联在蛋白质序列分析中的应用 孙自勇 吴盛基础医学与临床-2003年2期
5. 人重组磷脂酶D2变构体cDNA和蛋白质序列分析 朱玲[1] 陆惠民[2] 中国生物工程杂志-2003年3期
6. 隐马尔可夫模型用于蛋白质序列分析 吴晓明[1] 程敬之[2] 生物医学工程学杂志-2002年3期
7. 假单胞菌sp.130 GL—7—ACA酰化酶的核苷酸和蛋白质序列分析 茅翔[1] 李勇[2] 生物工程学报-2002年1期
8. 质谱在肽和蛋白质序列分析中的应用 陈晶 赵玉芬 有机化学-2002年2期