D,固定大小和可变大小消息
Answer:A.对称和非对称通信:对称通信的影响是它允许发送者和接收者之间有一个集合点。缺点是阻塞发送时,不需要集合点,而消息不能异步传递。因此,消息传递系统,往往提供两种形式的同步。 B.自动和显式缓冲:自动缓冲提供了一个无限长度的队列,从而保证了发送者在复制消息时不会遇到阻塞,如何提供自动缓存的规范,一个方案也许能保存足够大的内存,但许多内存被浪费缓存明确指定缓冲区的大小。在这种状况下,发送者不能在等待可用空间队列中被阻塞。然而,缓冲明确的内存不太可能被浪费。 C.复制发送和引用发送:复制发送不允许接收者改变参数的状态,引用发送是允许的。引用发送允许的优点之一是它允许程序员写一个分布式版本的一个集中的应用程序。Java’s RMI 公司提供两种发送,但引用传递一个参数需要声明这个参数是一个远程对象。 D.固定大小和可变大小消息:涉及的太多是有关缓冲问题,带有定长信息,一个拥有具体规模的缓冲课容纳已知数量的信息缓冲能容纳的可变信息数量是未知的。考虑Windows 2000如何处理这种情况。带有定长信息(<256bytes),信息从发送者的地址空间被复制至接受进程的地址空间。更大的信息(如变长信息)使用共享内存传递信息。
第四章线程
4.1举两个多线程程序设计的例子来说明多线程不比单线程方案提高性能
答:1)任何形式的顺序程序对线程来说都不是一个好的形式。例如一个计算个人报酬的程
序。
2)另外一个例子是一个“空壳”程序,如C-shell和korn shell。这种程序必须
密切检测其本身的工作空间。如打开的文件、环境变量和当前工作目录。
4.2描述一下线程库采取行动进行用户级线程上下文切换的过程
答:用户线程之间的上下文切换和内核线程之间的相互转换是非常相似的。但它依赖于线程库和怎样把用户线程指给内核程序。一般来说,用户线程之间的上下文切换涉及到用一个用户程序的轻量级进程(LWP)和用另外一个线程来代替。这种行为通常涉及到寄存器的节约和释放。 4.3在哪些情况下使用多内核线程的多线程方案比单处理器系统的单个线程方案提供更好
的性能。 答:当一个内核线程的页面发生错误时,另外的内核线程会用一种有效的方法被转换成使用
交错时间。另一方面,当页面发生错误时,一个单一线程进程将不能够发挥有效性
能。因此,在一个程序可能有频繁的页面错误或不得不等待其他系统的事件的情况下,多线程方案会有比单处理器系统更好的性能。
4.4以下程序中的哪些组成部分在多线程程序中是被线程共享的? a.寄存值 b.堆内存 c.全局变量 d.栈内存
答:一个线程程序的线程共享堆内存和全局变量,但每个线程都有属于自己的一组寄存值和
栈内存。 4.5一个采用多用户线程的多线程方案在多进程系统中能够取得比在单处理器系统中更好
的性能吗? 答:一个包括多用户线程的多线程系统无法在多处理系统上同时使用不同的处理器。操作系
统只能看到一个单一的进程且不会调度在不同处理器上的不同进程的线程。因此,多处理器系统执行多个用户线程是没有性能优势的。 4.6就如4.5.2章节描述的那样,Linux没有区分进程和线程的能力。且Linux线程都是用
相同的方法:允许一个任务与一组传递给clone()系统调用的标志的进程或线程。但许多操作系统,例如windows XP和Solaris,对进程和线程都是一视同仁。基本上,这种使用notation的系统,一个进程的数据结构包括一个指向属于进程的不同线程的指针。区别建模过程和在内核中线程的两种方法。 答:一方面,进程和线程被视为相似实体的系统中,有些系统代码可以简化。例如,一个调
度器可以在平等的基础上考虑不同的进程和线程,且不需要特殊的代码,在调度中审查有关线程的进程。另一方面,这种统一会使进程资源限制更加困难。相反,一些额外的复杂性被需要,用来确定哪个线程与哪个进程一致和执行重复的计数任务。 4.7由4.11给出的程序使用了Pthread的应用程序编程接口(API),在程序的第c行和第p行分别会输出什么? 答:c行会输出5,p行会输出0.
4.8考虑一个多处理器系统和用多线程对多线程模式编写的多线程程序。让程序中的用户线
程数量多于系统中的处理器的数量,讨论下列情况下的性能意义: a.由程序分配的内核线程的数量比处理器少 b. 由程序分配的内核线程的数量与处理器相同
c. 由程序分配的内核线程的数量大于处理器数量但少于用户线程的数量
答:当内核线程的数量少于处理器时,一些处理器将仍然处于空闲状态。因为,调度图中只
有内核线程的处理器,而不是用户线程的处理器。当程序分配的内核线程的数量与处理器相同时,那么有可能所有处理器将同时使用。然而,当一个内核块内的内核(因页面错误或同时援引系统调用)相应的处理器将闲置。当由程序分配的内核线程的数量大于处理器数量时,封锁一个内核线程并调出,换入另一个准备执行的内核线程。因此,增加多处理器系统的利用率。
第五章 CPU调度
5.1为什么对调度来说,区分I/0限制的程序和CPU限制的程序是重要的?
答:I/0限制的程序有在运行I/O操作前只运行很少数量的计算机操作的性质。这种程序一
般来说不会使用很多的CPU。另一方面,CPU限制的程序利用整个的时间片,且不做任何阻碍I/O操作的工作。因此,通过给I/O限制的程序优先权和允许在CPU限制的程序之前运行,可以很好的利用计算机资源。 5.2讨论以下各对调度标准在某种背景下会有的冲突 a.CPU利用率和响应时间 b.平均周转时间和最大等待时间 c.I/O设备利用率和CPU利用率
答:a.CPU利用率和响应时间:当经常性的上下文切换减少到最低时,CPU利用率增加。通
过减少使用上下文切换程序来降低经常性的上下文切换。但这样可能会导致进程响应时间的增加。 b.平均周转时间和最大等待时间:通过最先执行最短任务可以使平均周转时间最短。
然而,这种调度策略可能会使长时间运行的任务永远得不到调度且会增加他们的等待时间。
c.I/O设备利用率和CPU利用率:CPU利用率的最大化可以通过长时间运行CPU限制
的任务和同时不实行上下文切换。I/O设备利用率的最大化可以通过尽可能调度已经准备好的I/O限制的任务。因此,导致上下文切换。 5.3考虑指数平均公式来预测下一次CPU区间的长度,使用以下参数值会有什么影响? a.a=0和t=100毫秒 b.a=0.99和t=10毫秒
答:当a=0和t=100毫秒时,公式总是会预测下一次的CPU区间为100毫秒。当a=0.99和
t=10毫秒时,进程最近的行为是给予更高的重量和过去的就能成相比。因此,调度算法几乎是无记忆的,且简单预测未来区间的长度为下一次的CPU执行的时间片。 5.4考虑下列进程集,进程占用的CPU区间长度以毫秒来计算:
进程区间时间优先级
P1 10 3 P2 1 1 P3 2 3 P4 1 4 P5 5 2
假设在时刻0以进程P1,P2,P3,P4,P5的顺序到达。
a.画出4个Gantt图分别演示用FCFS、SJF、非抢占优先级(数字小代表优先级高)和RR(时间片=1)算法调度时进程的执行过程。
b.在a里每个进程在每种调度算法下的周转时间是多少? c.在a里每个进程在每种调度算法下的等待时间是多少? d.在a里哪一种调度算法的平均等待时间对所有进程而言最小? 答:a.甘特图略 b.周转时间
P1 P2 P3 P4 FCFS 10 11 13 14 RR 19 2 7 4 SJF 19 1 4 2 非抢占优先级 16 1 18 19 P5 19 14 9 6 c.等待时间 P1 P2 P3 P4 P5 FCFS 0 10 11 13 14 RR 9 1 5 3 9 SJF 9 0 2 1 4 非抢占优先级 6 0 16 18 2 d.SJF
5.5下面哪些算法会引起饥饿
a.先来先服务 b.最短工作优先调度 c.轮换法调度 d.优先级调度
答:最短工作优先调度和优先级调度算法会引起饥饿
5.6考虑RR调度算法的一个变种,在这个算法里,就绪队列里的项是指向PCB的指针。 a.如果把两个指针指向就绪队列中的同一个进程,会有什么效果? b.这个方案的主要优点和缺点是什么?
c.如何修改基本的RR调度算法,从而不用两个指针达到同样的效果?
答.a.实际上,这个过程将会增加它的优先权,因为通过经常得到时间它能够优先得以
运行。 b.优点是越重要的工作可以得到更多的时间。也就是说,优先级越高越先运行。然
而,结果将由短任务来承担。 c.分配一个更长的时间给优先级越高的程序。换句话说,可能有两个或多个时间片在
RR调度中。
5.7考虑一个运行十个I/O限制任务和一个CPU限制任务的系统。假设,I/O限制任务一次分配给一个I/O操作1毫秒的CPU计算,但每个I/O操作的完成需要 10毫秒。同时,假设间接的上下文切换要0.1毫秒,所有的进程都是长进程。对一个RR调度来说,以下情况时CPU的利用率是多少: