微积分第一章习题解答(下)

2018-12-29 19:59

习题1—1解答 1. 设f(x,y)?xy?x11x1,求f(?x,?y),f(,),f(xy,), yxyyf(x,y)11xy1xyyxxy22解f(?x,?y)?xy?xy;f(,)??;f(xy,)?x?y;1f(x,y)?yxy2?x

2. 设f(x,y)?lnxlny,证明:f(xy,uv)?f(x,u)?f(x,v)?f(y,u)?f(y,v)

f(xy,uv)?ln(xy)?ln(uv)?(lnx?lny)(lnu?lnv)?lnx?lnu?lnx?lnv?lny?lnu?lny?lnv?f(x,u)?f(x,v)?f(y,u)?f(y,v)

3. 求下列函数的定义域,并画出定义域的图形: (1)f(x,y)?1?x2?2y?1;

2(2)f(x,y)?4x?y2ln(1?x?y)xa222;

(3)f(x,y)?1??yb22?zc22;

(4)f(x,y,z)?x?2y?2z2.

1?x?y?z解(1)D?{(x,y)x?1,y?1

?

y 1 -1 O -1 1 x (2)D?(x,y)0?x2?y2?1,y2?4x

?? y 1 -1 O -1 1 x 1

222??xyz(3)D??(x,y)2?2?2?1? abc??z c -a

-b a x O b y (4)D?(x,y,z)x?0,y?0,z?0,x2?y2?z2?1

4.求下列各极限: (1)lim1?xyx?y22??z 1 O x 1?00?1?1

1 y 1 x?0y?1=

(2)limln(x?ex?y2?2y)2x?1y?0?ln(1?e)1?0(2?0?ln2

(3)limxy?4xyx?0y?0?limxy?4)(2?xy(2?xy?4)x?0y?0xy?4)??14

(4)limsin(xy)yx?2y?0?limsin(xy)xyx?2y?0?x?2

5.证明下列极限不存在: (1)limx?0y?0x?yx?y; (2)limxy22222x?0y?0xy?(x?y)

(1)证明 如果动点P(x,y)沿y?2x趋向(0,0) 则limx?yx?yx?2xx?2x??3;

x?0y?2x?0?limx?0如果动点P(x,y)沿x?2y趋向(0,0),则limx?yx?yy?0x?2y?0?lim3yyy?0?3

2

所以极限不存在。

(2)证明: 如果动点P(x,y)沿y?x趋向(0,0)

xy22222则limx?0y?x?0xy?(x?y)?limxx44x?0?1;

如果动点P(x,y)沿y?2x趋向(0,0),则lim所以极限不存在。

6.指出下列函数的间断点: (1)f(x,y)?y?2xy?2x2xy22222x?0y?2x?0xy?(x?y)?lim4x442x?04x?x?0

; (2)z?lnx?y。

解 (1)为使函数表达式有意义,需y?2x?0,所以在y?2x?0处,函数间断。 (2)为使函数表达式有意义,需x?y,所以在x?y处,函数间断。 习题1—2 1.(1)z?xy1y?yx

?z?x??yx2;

?z?y?1x?xy2.

(2)

?z?x?ycos(xy)?2ycos(xy)sin(xy)?y[cos(xy)?sin(2xy)]

?z?y?xcos(xy)?2xcos(xy)sin(xy)?x[cos(xy)?sin(2xy)]

(3)

?z?x?y(1?xy)y?1y?y(1?xy)2y?1,

1?zz?yx1?xy lnz=yln,两边同时对y求偏导得?ln(1?xy)?y,

?z?y?z[ln1(?xy)?xy1?xy]?(1?xy)[ln1(?xy)?yxy1?xy];

(4)

?z?x1??x?2yxx3y2?x?2yx(x?y)33,

3

1?z?y?xx?2yx2?13x?y

;?u(5)?x?yzyxz?1,?u?y?1zyxzlnx,?u?z??yz2yxzlnx;

(6)

?u?x?z(x?y)z?12z1?(x?y)z(x?y),

?u?y?u?zz?12z??1?(x?y)z,

?(x?y)ln(x?y)1?(x?y)2z;

2.(1)

zx?y,zy?x,zxx?0,zxy?1,zyy?;

(2) zx?asin2(ax?by),zy?bsin2(ax?by),

zxx?2acos2(ax?by),zxy?2abcos2(ax?by),zyy?2bcos2(ax?by).

22 3 fx?y?2xz,fy?2xy?z,fz?2yz?x,fxx?2z,fxz?2x,fyz?2z,

fxx(0,0,1)?2,fxz(1,0,2)?2,fyz(0,?1,0)?0.

2224

zx??2sin2(x?t2),zt?sin2(x?t2yt2),zxt?2cos2(x?t2)?0.

t2),ztt??cos2(x?t2)

2ztt?zxt??2cos2(x?)?2cos2(x?5.(1) zx??12yx2yex, zy?1xex,dz??yx2yexdx?

1xyexdy;

(2) z?ln(x2?y),zx?2xx?y22,zy?yx?y22,dz? xx?y22dx?yx?y22dy;

(3)zx2yx???2 , zy?2y2x?y1?()1?x?y1?ydx?xdyxx?2dz? ,; 222y2x?yx?y()x 4

(4) ux?yzxyz?1,uy?zxyz?1yzlnx,uz?yxyzyzlnx, lnxdz.

du?yzxdx?zxlnxdy?yxyz6. 设对角线为z,则z?22x?y,zx?xx?y22,zy?yx?y22, dz?xdx?ydyx?y22

当x?6,y?8,?x?0.05,?y??0.1时,?z?dz?6?0.05?8?(?0.1)6?822 =-0.05(m).

7. 设两腰分别为x、y,斜边为z,则z?zx?xx?y22x?y,

22,zy?yx?y22, dz?xdx?ydyx?y22,

设x、y、z的绝对误差分别为?x、?y、?z, 当x?7,y?24,?x??x?0.1,?y???z?dz?7?0.1?24?0.17?2422y?0.1时, z?7?2422?25

=0.124,z的绝对误差?z?0.124

z的相对误差

?zz?0.12425?0.496%.

8. 设内半径为r,内高为h,容积为V,则

V??rh,Vr?2?rh,Vh??r,dV?2?rhdr??rdh,

222当r?4,h?20,?r?0.1,?h?0.1时,

?V?dV?2?3.14?4?20?0.1?3.14?4?0.1?55.264(cm).

23习题1—3

yx? )21.

dudx??fdx?xdx??fdy?ydx??fdz?zdx?1?(zxyzax41?(22zxyz?xyzxyz2?ae)2ax?1?(?2a(ax?1)

)2=

y[z?axz?2axy(ax?1)]z?xy??f?????x?222=

(ax?1)e(1?ax)22ax(ax?1)?xe.

342.

?z?x?f?????x=

?1??2?x1?x?y22?arcsin??4x4x?y=

5


微积分第一章习题解答(下).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:服装史课后思考题及名词解释

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: