分析化学习题答案_下册_第三版高等教育出版社_华中师范大学_陕西

2019-01-05 12:35

第三章 紫外-可见吸收光谱法

1、已知丙酮的正己烷溶液的两个吸收峰 138nm 和279nm 分别属于л→л跃迁和n→л跃迁,试

计算л、n、л轨道间的能量差,并分别以电子伏特(ev),焦耳(J)表示。 解:对于л→л跃迁,λ1=138nm=1.38×10m

则ν=νC=C/λ1=3×10/1.38×10=2.17×10s 则E=hv=6.62×10×2.17×10=1.44×10J E=hv=4.136×10

对于n→л跃迁,λ2=279nm=2.79×10m

则ν=νC=C/λ1=3×10/2.79×10=1.08×10s则E=hv=6.62×10×1.08×10=7.12×10J E=hv=4.136×10

*

-15-34

15

-19

8

-7

15-1

*

-7

-15-34

15

-18

8

-7

15-1

*

-7

*

*

*

×2.17×10=8.98ev

15

×1.08×10=4.47ev

-18

*

-19

15

答:л→л跃迁的能量差为1.44×10J,合8.98ev;n→л跃迁的能量差为7.12×10J,合4.47ev。

3、作为苯环的取代基,-NH3不具有助色作用,-NH2却具有助色作用;-DH的助色作用明显小于-O。试说明原因。

答:助色团中至少要有一对非键电子n,这样才能与苯环上的л电子相互作用产生助色作用,由于-NH2中还有一对非键n电子,因此有助色作用,而形成-NH3基团时,非键n电子消失了,则助色作用也就随之消失了。

由于氧负离子O中的非键n电子比羟基中的氧原子多了一对,因此其助色作用更为显著。

4、铬黑T在PH<6时为红色(?max=515nm),在PH=7时为蓝色(?max=615nm),

PH=9.5时与Mg2形成的螯合物为紫红色(?max=542nm),试从吸收光谱产生机理上给予解释。

(参考书P23)

解: 由于铬黑T在PH<6、PH=7、PH=9.5时其最大吸收波长均在可见光波长范围内,因此所得的化合物有颜色,呈吸收波长的互补色。由于当PH<6到PH=7到PH=9.5试,最大吸收波长有?max=515nm到?max=615nm到?max=542nm,吸收峰先红移后蓝移,因此铬黑T在PH<6时为红色,PH=7时为蓝色,PH=9.5时为紫红色。

5、4-甲基戊烯酮有两种异构体: (左图) 和

实验发现一种异构体在235nm处有一强吸收峰(K=1000L? mol? cm),另一种异构体在220nm以后没有强吸收峰,试判断具有前一种紫外吸收特征的是哪种异构体。

-1

-1

CH3OCCH3H2CC解:有紫外光谱分析可知,若在210-250nm有强吸收,则表示含有共轭双键,因此,由于在235nm

处有一强吸收,则表明其结构含有共轭双键,因此这种异构体应为 (左图) 。

若在220-280nm范围内无吸收,可推断化合物不含苯环、共轭双键、酮基、醛基、溴和碘,由于另一种异构体在220nm以后没有强吸收,则此化合物不含共轭双键,因此应为:

CH3OCCH3H2CC第四章 红外吸收光谱法

3、CO的红外吸收光谱在2170cm-1处有一振动吸收峰。试求CO键的力常数。

2?K?(2?c?)? 解:根据 则 m1m212?16???(m1?m2)?L(12?16)?0.02?1023=1.14×10-23g=1.14×10-26Kg 其中

2-

则K?(2?c?)?=(2×3.14×3×108×2.17×105)2×1.14×1026

??12?cK=1905N/m =19.05N/cm

答:CO键的力常数19.05 N /cm。

5、指出下列各种振动形式中,哪些是红外活性振动,哪些是非红外活性振动。 分子结构 振动形式 (1) CH3-CH3 γ(C-C) (2) CH3—CCl3 γ(C-C) (3) SO2 γs,γas

HHC(4) H2CCH2 (a) ?(CH)

HHCHH

C (b) ?(CH)++CHH+H

HCHC(c) W(CH) H+H+

H--(d)?(CH) HCCH+

解:只有发生使偶极矩有变化的振动才能吸收红外辐射,即才是红外活性的,否则为红外非活性的。

也即只有不对称的振动形式才是红外活性的,对称的振动则为红外非活性的。因此,上述结构中:

红外活性振动有:(2)CH3—CCl3 γ(C-C) (3)SO2 γs, γas (伸缩振动)

(4)H2CCH2 中的(a) ?(CH)、 (c) W(CH) 非红外活性的有:(1) CH3-CH3 ?(CH) (4)H2C

OHOCH2 中的(b) ?(CH) (d)?(CH),

6、和 是同分异构体,试分析两者红外光谱的差异。

OH答:由于

中含有一个-OH基团,因此在红外光谱中有一强吸收峰在3700~3100cm-1,

OH-1

且此分子中含有一个C=C双键,因此在1680~1620cm也有一较弱的吸收峰。

O红外

光谱中有2个特征峰,而

-1

中只含有一个C=O特征官能团,因此反映在红外光谱中则在

O1850~1600cm有一强吸收峰,即的红外光谱只有一个特征吸收峰

7、化合物的分子式为C3H6O2,红外光谱如4-11所示。解析改化合物的结构。

答:①由于化合物的分子式C3H6O2符合通式CnH2nO2,根据我们所学知识可初步判断此化合物为酸

或者酯。

②由于谱带在1730cm-1处有一强吸收峰,此处落于C=O的1850~1600cm-1的振动区间,因此可判断改化合物含有C=O官能团。1730cm-1处的吸收峰表明此物质为饱和酯峰。

③图表在1300~1000cm-1范围内也有一系列特征吸收峰,特别在1200cm-1处有一强吸收峰,符合C-O的振动范围,因此可判断改化合物含有C-O键。

④图谱中在2820,2720cm-1处含有吸收峰,符合-CH3,-CH2对称伸缩范围,因此可判断化合物中含有-CH3基团和-CH2基团。

O

H H C O C2 CH 3

综上所述,此化合物的结构式应为: 第六章 原子发射光谱法

1. 何谓共振线、灵敏线、最后线和分析线?它们之间有什么联系?

答:以基态为跃迁低能级的光谱线称为共振线;灵敏线是指元素特征光谱中强度较大的谱线,通常是具有较低激发电位和较大跃迁概率的共振线;最后线是指试样中被测元素含量或浓度逐渐减小时而最后消失的谱线,最后线往往就是最灵敏线;分析线是分析过程中所使用的谱线,是元素的灵敏线。

2. 解释下列名词:

(1)原子线和离子线; (2)等离子体及ICP炬; (3)弧焰温度和电极头温度; (4)谱线的自吸和自蚀; (5)反射光栅和光栅常数; (6)线色散率和分辨率; (7)闪耀角和闪耀波长; (8)谱线的强度和黑度; (9)内标线和分析线对; (10)标准加入法。 答:(1)原子线是原子被激发所发射的谱线;离子线是离子被激发所发射的谱线。

(2)近代物理学中,把电离度(?)大于0.1 %、其正负电荷相等的电离气体称为等离子体;ICP炬是指高频电能通过电感(感应线圈)耦合到等离子体所得到的外观上类似火焰的高频放电光源。 (3)弧焰温度即为激发温度,电极头温度即为蒸发温度。

(4)当原子发射的辐射从弧焰中心穿过弧层射出时,被其自身的基态原子所吸收而使谱线中心强度减弱的现象称为谱线的自吸;自吸严重时会使谱线从中央一分为二,这种现象称为自蚀。

(5)在光学玻璃或金属高抛光表面上,准确地刻制出许多等宽、等距、平行的具有反射面的刻痕,称为反射光栅;光栅常数是相邻两刻痕间的距离,即为光栅刻痕密度b(mm?1)的倒数。

(6)线色散率表示具有单位波长差的两条谱线在焦平面上分开的距离;分辨率是根据瑞利准则分辨

清楚两条相邻光谱线的能力。

(7)闪耀光栅刻痕小反射面与光栅平面的夹角i称为闪耀角;闪耀角所对应辐射能量最大的波长称为闪耀波长。

(8)谱线的强度常用辐射强度I(J?s?1?m?3)表示,即单位体积的辐射功率,是群体光子辐射总能量的反映;谱线的黑度S是谱线透射比倒数的对数。

(9)在基体元素(或定量加入的其它元素)的谱线中选一条谱线为比较线,又称为内标线。在被测定元素的谱线中选一条灵敏线作为分析线,所选用的分析线与内标线组成分析线对。

(10)标准加入法是当测定的元素含量很低时,或者试样基体组成复杂、未知时,通过加入已知的不同量或不同浓度的待测元素的标样或标准溶液来测定待测元素含量的方法。

3. 推导出原子线和离子线强度与原子总密度的关系式,并讨论影响谱线强度的主要因素。 答:Iij?giAijhvij(1??)Nexp(?Ei/kT),影响谱线强度的主要因素有(1)激发电位(Ei),与Z谱线强度是负指数关系,Ei越低,谱线强度越大;(2)跃迁几率(Aij),与谱线强度成正比;(3)统计权重g,与谱线强度成正比;(4)原子总密度(N),与谱线强度成正比;(5)激发温度,主要影响电离度?,存在最佳激发温度。

4. 谱线自吸对光谱定量分析有何影响?

答:在光谱定量分析中,自吸现象的出现,将严重影响谱线的强度,限制可分析的含量范围。

5. 激发光源的作用是什么?对其性能有何具体要求?

答:激发光源的作用是提供试样蒸发、解离和激发所需要的能量,并产生辐射信号;对激发光源的要求是:激发能力强,灵敏度高,稳定性好,结构简单,操作方便,使用安全。

6. 常用的激发光源有哪几种类型?简述工作原理和基本特点。

答:目前常用的激发光源有(1)直流电弧光源,其工作原理是:直流电弧被高频引燃装置引燃,阴极产生热电子发射,电子在电场作用下高速奔向阳极,炽热的阳极斑使试样蒸发、解离,解离的气态原子与电子碰撞激发并电离,形成的正离子撞击阴极,阴极不断发射电子,这样电极间形成等离子体,并维持电弧放电,气态原子、离子与等离子体中其它粒子碰撞激发,产生原子、离子的发射光谱;其特点是,电极温度高,分析的绝对灵敏度高,电弧温度一般可达4000~7000 K,激发能力强,但放电的稳定性差,定量分析的精密度不高,适用于矿物和难挥发试样的定性、半定量及痕量元素的分析。

(2)低压交流电弧光源,其工作原理是:为了维持交流电弧放电,发生器由高频高压引燃电路和低压电弧电路组成。电源接通后,高频高压电路使分析间隙的空气电离,形成等离子气体导电通道,引燃电弧。同时,低压交流电经低频低压电弧电路在分析间隙产生电弧放电。随着分析间隙电流增大,出现明显的电压降,当电压降低于维持放电所需电压使,电弧即熄灭。每交流半周都以相同步骤用高频高压电流引燃一次,反复进行此过程可使低压交流电弧维持不灭。其特点是:弧焰温度可达4000~8000 K,激发能力强,但电极温度低,其蒸发能力稍差,光源稳定性较好,定量分析的精密度较高,广泛用于金属、合金中低含量元素的定量分析。

(3)高压火花光源,其工作原理是:高压火花发生器使电容器储存很高的能量,产生很大电流密度的火花放电,放电后的电容器的两端电压下降,在交流电第二个半周时,电容器又重新充电、再放电。反复进行充电、放电以维持火花持续放电。其特点是:电极温度低,灵敏度低,火花温度高,可激发难激发元素,光源稳定性好,适用于低熔点金属和合金的定量分析。

(4)电感耦合等离子体光源,其工作原理是:用高频火花引燃时,部分Ar工作气体被电离,产生


分析化学习题答案_下册_第三版高等教育出版社_华中师范大学_陕西.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:网站系统整体框架设计

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: