小学奥数基础教程(四年级)
例4 检验下面的减法算式是否正确: 7832145-2167953=5664192。
- 11 -
分析与解:被减数的九余数减去减数的九余数(若不够减,可在被减数的九余数上加9,然后再减)应当等于差的九余数。如果不等,那么这个减法计算肯定不正确。上式中被减数的九余数是3,减数的九余数是6,由(9+3)-6=6知,原题等号左边的九余数是6。等号右边的九余数也是6。因为6=6,所以这个减法运算可能正确。
值得注意的是,这里我们用的是“可能正确”。利用弃九法检验加法、减法、乘法(见例5)运算的结果是否正确时,如果等号两边的九余数不相等,那么这个算式肯定不正确;如果等号两边的九余数相等,那么还不能确定算式是否正确,因为九余数只有0,1,2,?,8九种情况,不同的数可能有相同的九余数。所以用弃九法检验运算的正确性,只是一种粗略的检验。
例5 检验下面的乘法算式是否正确: 46876×9537=447156412。
分析与解:两个因数的九余数相乘,所得的数的九余数应当等于两个因数的乘积的九余数。如果不等,那么这个乘法计算肯定不正确。上式中,被乘数的九余数是4,乘数的九余数是6,4×6=24,24的九余数是6。乘积的九余数是7。6≠7,所以这个算式不正确。
说明:因为除法是乘法的逆运算,被除数=除数×商+余数,所以当余数为零时,利用弃九法验算除法可化为用弃九法去验算乘法。例如,检验383801÷253=1517的正确性,只需检验1517×253=383801的正确性。 练习5
1.求下列各数除以9的余数: (1)7468251; (2)36298745; (3)2657348; (4)6678254193。 2.求下列各式除以9的余数:
(1)67235+82564; (2)97256-47823; (3)2783×6451; (4)3477+265×841。 3.用弃九法检验下列各题计算的正确性: (1)228×222=50616; (2)334×336=112224; (3)23372428÷6236=3748; (4)12345÷6789=83810105。
4.有一个2000位的数A能被9整除,数A的各个数位上的数字之和是B,数B的各个数位上的数字之和是C,数C的各个数位上的数字之和是D。求D。 第6讲 数的整除性(二)
这一讲主要讲能被11整除的数的特征。
一个数从右边数起,第1,3,5,?位称为奇数位,第2,4,6,?位称为偶数位。也就是说,个位、百位、万位??是奇数位,十位、千位、十万位??是偶数位。例如9位数768325419中,奇数位与偶数位如下图所示:
能被11整除的数的特征:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大数减小数)如果能被11整除,那么这个数就能被11整除。
例1 判断七位数1839673能否被11整除。
分析与解:奇数位上的数字之和为1+3+6+3=13,偶数位上的数字之和为8+9+7=24,因为24-13=11能被11整除,所以1839673能被11整除。
根据能被11整除的数的特征,也能求出一个数除以11的余数。
小学奥数基础教程(四年级) - 12 -
一个数除以11的余数,与它的奇数位上的数字之和减去偶数位上的数字之和所得的差除以11的余数相同。如果奇数位上的数字之和小于偶数位上的数字之和,那么应在奇数位上的数字之和上再增加11的整数倍,使其大于偶数位上的数字之和。
例2 求下列各数除以11的余数: (1)41873; (2)296738185。
分析与解:(1)[(4+8+3)-(1+7)]÷11 =7÷11=0??7,
所以41873除以11的余数是7。
(2)奇数位之和为2+6+3+1+5=17,偶数位之和为9+7+8+8=32。因为17<32,所以应给17增加11的整数倍,使其大于32。
(17+11×2)-32=7,
所以296738185除以11的余数是7。
需要说明的是,当奇数位数字之和远远小于偶数位数字之和时,为了计算方便,也可以用偶数位数字之和减去奇数位数字之和,再除以11,所得余数与11的差即为所求。如上题(2)中,(32-17)÷11=1??4,所求余数是11-4=7。 例3 求
除以11的余数。
分析与解:奇数位是101个1,偶数位是100个9。 (9×100-1×101)÷11 =799÷11=72??7, 11-7=4,所求余数是4。
例3还有其它简捷解法,例如每个“19”奇偶数位上的数字相差9-1=8,
奇数位上的数字和与偶数位
上的数字和相差8×99=8×9×11,能被11整除。所以例3相当于求最后三位数191除以11的余数。 例4 用3,3,7,7四个数码能排出哪些能被11整除的四位数?
解:只要奇数位和偶数位上各有一个3和一个7即可。有3377,3773,7337,7733。 例5 用1~9九个数码组成能被11整除的没有重复数字的最大九位数。 分析与解:最大的没有重复数字的九位数是987654321,由 (9+7+5+3+1)-(8+6+4+2)=5
知,987654321不能被11整除。为了保证这个数尽可能大,我们尽量调整低位数字,只要使奇数位的数字和增加3(偶数位的数字和自然就减少3),奇数位的数字之和与偶数位的数字之和的差就变为5+3×2=11,这个数就能被11整除。调整“4321”,只要4调到奇数位,1调到偶数位,奇数位就比原来增大3,就可达到目的。此时,4,3在奇数位,2,1在偶数位,后四位最大是2413。所求数为987652413。 例6 六位数
能被99整除,求A和B。
分析与解:由99=9×11,且9与11互质,所以六位数既能被9整除又能被11整除。因为六位数能被9整除,所以 A+2+8+7+5+B =22+A+B
应能被9整除,由此推知A+B=5或14。又因为六位数能被11整除,所以 (A+8+5)-(2+7+B) =A-B+4
应能被11整除,即 A-B+4=0或A-B+4=11。 化简得B-A=4或A-B=7。 因为A+B与A-B同奇同偶,所以有
小学奥数基础教程(四年级) - 13 -
在(1)中,A≤5与A≥7不能同时满足,所以无解。 在(2)中,上、下两式相加,得 (B+A)+(B-A)=14+4, 2B=18, B=9。
将B=9代入A+B=14,得A=5。 所以,A=5,B=9。 练习6
1.为使五位数6□295能被11整除,□内应当填几?
2.用1,2,3,4四个数码能排出哪些能被11整除的没有重复数字的四位数? 3.求能被11整除的最大的没有重复数字的五位数。 4.求下列各数除以11的余数:
(1)2485; (2)63582; (3)987654321。 5.求
除以11的余数。
6.六位数 7.七位数第7讲 找规律(一)
5A634B能被33整除,求A+B。 3A8629B是88的倍数,求A和B。
我们在三年级已经见过“找规律”这个题目,学习了如何发现图形、数表和数列的变化规律。这一讲重点学习具有“周期性”变化规律的问题。什么是周期性变化规律呢?比如,一年有春夏秋冬四季,百花盛开的春季过后就是夏天,赤日炎炎的夏季过后就是秋天,果实累累的秋季过后就是冬天,白雪皑皑的冬季过后又到了春天。年复一年,总是按照春、夏、秋、冬四季变化,这就是周期性变化规律。再比如,数列0,1,2,0,1,2,0,1,2,0,?是按照0,1,2三个数重复出现的,这也是周期性变化问题。
下面,我们通过一些例题作进一步讲解。
例1 节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接3盏黄灯,然后又是5盏红灯、4盏蓝灯、3盏黄灯、??这样排下去。问: (1)第100盏灯是什么颜色? (2)前150盏彩灯中有多少盏蓝灯?
分析与解:这是一个周期变化问题。彩灯按照5红、4蓝、3黄,每12盏灯一个周期循环出现。 (1)100÷12=8??4,所以第100盏灯是第9个周期的第4盏灯,是红灯。
(2)150÷12=12??6,前150盏灯共有12个周期零6盏灯,12个周期中有蓝灯4×12=48(盏),最后的6盏灯中有1盏蓝灯,所以共有蓝灯48+1=49(盏)。
例2 有一串数,任何相邻的四个数之和都等于25。已知第1个数是3,第6个数是6,第11个数是7。问:这串数中第24个数是几?前77个数的和是多少?
分析与解:因为第1,2,3,4个数的和等于第2,3,4,5个数的和,所以第1个数与第5个数相同。进一步可推知,第1,5,9,13,?个数都相同。
同理,第2,6,10,14,?个数都相同,第3,7,11,15,?个数都相同,第4,8,12,16?个数都相同。 也就是说,这串数是按照每四个数为一个周期循环出现的。所以,第2个数等于第6个数,是6;第3个数等于第11个数,是7。前三个数依次是3,6,7,第四个数是 25-(3+6+7)=9。
小学奥数基础教程(四年级)
周期零1个数,其和为25×19+3=478。
例3 下面这串数的规律是:从第3个数起,每个数都是它前面两个数之和的个位数。问:这串数中第88个数是几? 628088640448?
- 14 -
这串数按照3,6,7,9的顺序循环出现。第24个数与第4个数相同,是9。由77÷4=9??1知,前77个数是19个
分析与解:这串数看起来没有什么规律,但是如果其中有两个相邻数字与前面的某两个相邻数字相同,那么根据这串数的构成规律,这两个相邻数字后面的数字必然与前面那两个相邻数字后面的数字相同,也就是说将出现周期性变化。我们试着将这串数再多写出几位:
当写出第21,22位(竖线右面的两位)时就会发现,它们与第1,2位数相同,所以这串数按每20个数一个周期循环出现。由88÷20=4??8知,第88个数与第8个数相同,所以第88个数是4。 从例3看出,周期性规律有时并不明显,要找到它还真得动点脑筋。
例4 在下面的一串数中,从第五个数起,每个数都是它前面四个数之和的个位数字。那么在这串数中,能否出现相邻的四个数是“2000”? 135761939237134?
分析与解:无休止地将这串数写下去,显然不是聪明的做法。按照例3的方法找到一周期,因为这个周期很长,所以也不是好方法。那么怎么办呢?仔细观察会发现,这串数的前四个数都是奇数,按照“每个数都是它前面四个数之和的个位数字”,如果不看具体数,只看数的奇偶性,那么将这串数依次写出来,得到 奇奇奇奇偶奇奇奇奇偶奇??
可以看出,这串数是按照四个奇数一个偶数的规律循环出现的,永远不会出现四个偶数连在一起的情况,即不会出现“2000”。
例5 A,B,C,D四个盒子中依次放有8,6,3,1个球。第1个小朋友找到放球最少的盒子,然后从其它盒子中各取一个球放入这个盒子;第2个小朋友也找到放球最少的盒子,然后也从其它盒子中各取一个球放入这个盒子??当100位小朋友放完后,A,B,C,D四个盒子中各放有几个球?
分析与解:按照题意,前六位小朋友放过后,A,B,C,D四个盒子中的球数如下表:
可以看出,第6人放过后与第2人放过后四个盒子中球的情况相同,所以从第2人放过后,每经过4人,四个盒子中球的情况重复出现一次。 (100-1)÷4=24??3,
所以第100次后的情况与第4次(3+1=4)后的情况相同,A,B,C,D盒中依次有4,6,3,5个球。 练习7
1.有一串很长的珠子,它是按照5颗红珠、3颗白珠、4颗黄珠、2颗绿珠的顺序重复排列的。问:第100颗珠子是什么颜色?前200颗珠子中有多少颗红珠?
2.将1,2,3,4,?除以3的余数依次排列起来,得到一个数列。求这个数列前100个数的和。
3.有一串数,前两个数是9和7,从第三个数起,每个数是它前面两个数乘积的个位数。这串数中第100个数是几?前100个数之和是多少?
4.有一列数,第一个数是6,以后每一个数都是它前面一个数与7的和的个位数。这列数中第88个数是几? 5.小明按1~3报数,小红按1~4报数。两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?
小学奥数基础教程(四年级) - 15 -
6.A,B,C,D四个盒子中依次放有9,6,3,0个小球。第1个小朋友找到放球最多的盒子,从中拿出3个球放到其它盒子中各1个球;第2个小朋友也找到放球最多的盒子,也从中拿出3个球放到其它盒子中各1个球??当100个小朋友放完后,A,B,C,D四个盒子中各放有几个球? 第8讲 找规律(二)
整数a与它本身的乘积,即a×a叫做这个数的平方,记作a,即a=a×a;同样,三个a的乘积叫做a的三次方,记作a,即a=a×a×a。一般地,n个a相乘,叫做a的n次方,记作a,即
本讲主要讲a的个位数的变化规律,以及a除以某数所得余数的变化规律。
因为积的个位数只与被乘数的个位数和乘数的个位数有关,所以an的个位数只与a的个位数有关,而a的个位数只有0,1,2,?,9共十种情况,故我们只需讨论这十种情况。
为了找出一个整数a自乘n次后,乘积的个位数字的变化规律,我们列出下页的表格,看看a,a,a,a,?的个位数字各是什么。
从表看出,a的个位数字的变化规律可分为三类:
(1)当a的个位数是0,1,5,6时,a的个位数仍然是0,1,5,6。
(2)当a的个位数是4,9时,随着n的增大,a的个位数按每两个数为一周期循环出现。其中a的个位数是4时,按4,6的顺序循环出现;a的个位数是9时,按9,1的顺序循环出现。
(3)当a的个位数是2,3,7,8时,随着n的增大,a的个位数按每四个数为一周期循环出现。其中a的个位数是2时,按2,4,8,6的顺序循环出现;a的个位数是3时,按3,9,7,1的顺序循环出现;当a的个位数是7时,按7,9,3,1的顺序循环出现;当a的个位数是8时,按8,4,2,6的顺序循环出现。
n
n
n
n
2
3
4
n
n
3
3
n
2
2
例1 求67的个位数字。
分析与解:因为67的个位数是7,所以67的个位数随着n的增大,按7,9,3,1四个数的顺序循环出现。 999÷4=249??3,
所以67的个位数字与7的个位数字相同,即67的个位数字是3。 例2 求2+3的个位数字。
分析与解:因为2的个位数字按2,4,8,6四个数的顺序循环出现,91÷4=22??3,所以,2的个位数字与2的个位数字相同,等于8。
类似地,3的个位数字按3,9,7,1四个数的顺序循环出现, 291÷4=72??3,
所以3与3的个位数相同,等于7。
最后得到2+3的个位数字与8+7的个位数字相同,等于5。 例3 求28-29的个位数字。
解:由128÷4=32知,28的个位数与8的个位数相同,等于6。由29÷2=14??1知,29的个位数与9的个位数相同,等于9。因为6<9,在减法中需向十位借位,所以所求个位数字为16-9=7。
128
4
29
1
128
2991
291
291
3n
n
91
3
91
291999
3
999
n
999