船模试验简介
http://163.14.136.54/science/content/1983/00010157/0002.htm
作者:吳聰能(台湾)
【摘要】利用縮小的船舶模型,不但可預估船隻的推力等流體力學上的性能,並可當作設計及改良工作方面的參考。
船模試驗之功用
船模試驗之功用可由其對實際設計工作及學術研究兩方面來看。船舶為一能載貨且具有動力的結構體,其形體常因航路天候、載貨種類、載貨多寡及航行速度之不同而作不同的設計,故很少有船隻是完全相同的。所以,船舶之設計都是在某些假設並參考同類型船舶而為之,因此建造出來的船隻,其性能未必能完全符合設計階段中所預期者。如果在建造之前不能充分了解該船隻之流體動力性能,等到建造完成之後,才發現達不到要求的速度或螺槳轉速轉不上去,縱然此種缺陷在技術上可以改進,但也不易彌補至理想的程度,且在時間及經濟上均造成浪費。因此,利用模型試驗預估船舶阻力及推進等流體動力性能,或作船體線形之改良,藉以輔助船舶設計,此為船模試驗對實際設計之功用。
在另一方面,造船學者存有一崇高理想,就是想用理論解析方法求出船隻在航行中受外力作用下,船體運動及結構受力的情形,期能以最小推動馬力、最少經費,而建造出速度最快、裝載最多、安全性最高的船舶來。但此一整體之最佳化理想因所牽涉到的因素多且複雜,在理論解析時無法同時將所有因素都一併考慮,僅能假定當研究某一特性時,對此特性影響較小之因素可以省略不予考慮,藉以使問題簡化。即使如此,理論之建立與求解亦非易事,更何況理論解之準確度,亦必須以船舶實際發生之情況加以印證,但船隻在海上航行係同時遭遇眾多因素影響,幾乎不可能使某一欲加深入研究之因素從其他因素中隔離。欲達此一目的,唯有在試驗室中以人為方法才能達到,也就是以模型試驗代替實船來印證理論之正確度,此為船模試驗對學術研究之功用。
船模試驗包括的項目很多,就流體動力學方面有阻力試驗(resistance test)、螺槳單獨試驗(open water test)、自推試驗(self-propulsion test)、空蝕試驗(cavitation test)、操縱性能試驗(maneuverability test)、船舵試驗(rudder test)、橫搖試驗(rolling test)……等,本文僅以其中的阻力試驗、螺槳單獨試驗、自推試驗作一簡介,期能讓讀者對船模試驗有進一步的認識。
船模試驗的理論依據
船模試驗的目的乃是利用縮小的模型來模擬實船的運動型態,由模型試驗所得到的數據推測實船的流力特性。要使模型試驗的結果能夠利用到實船,一定要使模型與實船達到相似的條件,所有模型試驗即是根據相似原理所導出來的,相似原理又出於因次解析(dimensional analysis),所以因次解析為船模試驗的理論基礎。在力學中,三個基本因次(dimension)為長度L、質量M、時間T,任何物理量都可以用這三個基本因次表示,如速度之因次為L/T,密度之因次為M/L,加速度之因次為L/T,力之因次為ML/T。因次解析的觀念是一﹑因次一致(dimensional homogeneity),即物理方程式中每一項的因次都一樣;二﹑物理方程式的存在與採用的單位無關;三﹑物理方程式可以無因次化,則當模型與實船相似時,適用於模型之無因次方程式亦可應用於實船。在船舶的阻力與推進問題中,我們利用因次解析可得到
2
3
2
【瀏覽原件】
上三式中RT為船之阻力、l船長、V速度、T螺槳之推力、Q螺槳轉矩、D螺槳直徑、n螺槳轉速、ρ為水之密度、St表面張力、μ黏性係數、g重力加速度、a聲音在水中傳播速度、P為壓力、Pv水的飽和蒸汽壓力。括弧內的每一項分別代表著不同的物理意義:
ρVl / μ為慣性力與黏性力之比,稱為雷諾數(Reynolds number, NR),流體有黏性,所以船體之黏性阻力與雷諾數有關。
【瀏覽原件】或【瀏覽原件】為慣性力與重力之比,稱為弗勞數(Froude number, NF)。有重力才有波浪,波浪是一種能量,船舶航行產生波浪,所以船舶波浪阻力與弗勞數有關。
V/a為慣性力與彈性力之比,稱為馬赫數(Machnumber, NM)。彈性力越大表示流體越不容易壓縮,越是容易壓縮之流體,物體在其中運動時也越容易形成流體之堆積現象,稱為震撼(shock)。推土機前面所堆的土越高,阻力也越大,所以流體中運動物體之阻力與馬赫數也有關係,但其影響在馬赫數接近於1或超過1時才會表現出來。對於船舶及螺槳來說,其速度遠小於音速,可不予考慮。
ρVl/St或ρVD/St為慣性力與表面張力之比,稱為偉伯數(Weber number, NW)。在水面上航行之船舶會受表面張力作用,但表面張力之影響極小,亦可不予考慮。
22
ρV/P-Pv為慣性力與壓力之此,我們定義【瀏覽原件】為空蝕數(cavitation number, σ)。壓力有變化才可能發生空蝕,空蝕數對船舶阻力並不重要,因船速幾乎不可能高到會在船體表面產生空蝕,但在螺槳其是否空蝕及螺槳性能卻深受空蝕數影響。
2
T/ρnD4稱為推力係數(thrust coefficient),以KT表示。Q/ρnD稱為轉矩係數(torque coefficient),以KQ表示。V/nD稱為前進係數(advance coefficient),以J表示。因面積與l
2
2
225
成比例,我們通常以溼表面積(wetted surface)S代替【瀏覽原件】的l,定義【瀏覽原件】為阻力係數(resistancecoefficient),以CT表示。
相似原理(principles of dynamic slmilarity)要求:一﹑幾何相似(geometric similarity),即模型與實船之幾何形狀相似,將實船按比例縮小作成模型即可;二﹑運動相似(kinematic similarity),即模型與實船周圍之流線亦達幾何相似,則在相對點處之流速方向一樣而速度大小成比例;三﹑動力相似(dynamic similarity),即作用於模型與實船之各同類型力之相似,由前面之因次解析知欲達完全的動力相似,必須要使模型與實船的雷諾數、弗勞數、馬赫數、偉伯數、空蝕數同時分別對應相等,則可由模型的流力特性推測實船的流力特性。所以(1)式所表示的物理意義為:兩個大小不等而幾何形狀相似之船舶,當(1)式等號右邊之每一無因次參數都分別對應相等,即兩者達動力相似時,則兩者之阻力係數相等。(2)式所表示的物理意義為:兩個大小不等而幾何形狀相似之螺槳,當(2)式等號右邊之每一無因次參數都分別對應相等時,則兩螺槳之推力係數與轉矩係數分別對應相等。事實上,完全的動力相似常不易達到,我們可從雷諾數與弗勞數輕易地看出來。例如我們作一個縮小比例為1/25之船模,lM/lS=1/25,下標M表模型、S表實船,假設兩者都在相同的
水中,p、u、g均相同。當【瀏覽原件】,得【瀏覽原件】;【瀏覽原件】時,【瀏覽原件】。在同一試驗中要使【瀏覽原件】,又要使VM=25Vs,此為不可能的事,除非作成1比1的模型,否則不可能達到完全的動力相似。所幸模型試驗並非一定要所有的「數」都相等不可,在大多數的問題中通常都僅有兩三個力是重要的,其餘不重要的力便可捨去不予考慮,船模試驗通常就是在僅考慮某些主要的作用力之下進行的。首先,我們先簡單的說明何謂阻力、推進與空蝕。
阻力、推進與空蝕
會游泳的朋友都有相同的體驗,就是當你不繼續踢水時你的速度就會慢下來,此乃因水在前進的反方向有一作用力阻止你前進,這個力我們稱為阻力。當一艘船在靜止的水面上不動時,船身四周所受水的壓力是平衡的,壓力在前後方向的總和為零。當船航行時,產生了動壓力,前面的水被船推高向兩側流動,被推高的水因地心吸力再向下降,因此在水面上激起了波浪。船體四周之壓力起了變化再也不平衡了,在航行的反方向產生了一個壓力的總和,阻止船的前進,是為壓力阻力,這種因船造出的波浪而生的阻力,我們稱之為波浪阻力(wave resistance)。假使有艘潛水艇在很深的海水中潛航,因為其離水面很深,不會在水面激起波浪,雖然沒有波浪阻力,但它仍舊有阻力,這是因為水有黏性的關係,潛艇與水接觸的表面與水摩擦而生阻力,這種阻力叫做黏性阻力(viscous resistance)。所以,在水面上航行的船除了有波浪阻力外,還有黏性阻力。
由於船在水中航行時水對船產生阻力,故為使船以某一速率航行時需施以一力,此力的大小與該船在該速率航行時的阻力有關,而最簡單且經濟之方式為該力係來自於船外的能源,如拖力或風力即是。此時,推進該船所需之力即等於該船的阻力,推進所需之功率即等於阻力與船速的乘積,若其單位為馬力,我們稱為有效馬力(effective horsepower)。但實用上,推進所需之力多來自一設於船內的能源,船的前進係由於其周圍水流動量的變化而引起的反作用力(即推力)所產生的。產生水流動量變化的器具則稱為推進器或螺槳(propeller),其使船前進之作用稱為推進(propulsion)。
純水在一個大氣壓力下,假如溫度升高到100℃便會發生沸騰現象,在燒開水時我們可見蒸汽泡首先在高溫的鍋底發生,然後靠浮力衝出水面。但水沸騰並非一定要熱至100℃才會發生,例如我們將壓力降至0.5609psia,純水在常溫約27℃便可以沸騰,但是我們並不覺得它很熱,這種現象稱之為冷
沸(cold boiling)。當螺槳在水中旋轉前進時,經過螺槳葉片之水流隨螺槳之速度而變,由伯努利方程式知,一水平流線上壓力與速度之關係可用p+1/2ρV=常數來表示,當流速增大時,壓力必會下降,等壓力降到當時溫度的水的飽和蒸汽壓力時,就會發生沸騰現象,水中有汽泡產生,此稱為空蝕。汽泡在水中流動,當流到較高之壓力區則會破裂,產生很大的爆破壓力,對螺槳表面有強烈的破壞作用,同時汽泡破裂時發生之鳴聲製造噪音,對軍艦而言甚為不利。當螺槳發生空蝕時,即使增加主機的輸出馬力,船速也不能增快,因此推進效率會降低。所以,設計螺槳時應注意防止空蝕的發生。以上分別對阻力、推進及空蝕的定義作了簡單的說明,接下來我們進入船模試驗的介紹。
2
阻力試驗
在船模阻力試驗當中,我們考慮作用於船體之主要力為慣性力、重力與黏性力,即CT=?(NF,NR)。因我們知實船與船模之NF及NR無法分別對應相等,而保持NF相等時,【瀏覽原件】為較易達到的條件,即船模以較實船為小的速度來跑,應較合理且可相對地減小試驗設備,因此阻力試驗時我們僅滿足(NF)M=(NF)S。對於NR不相等雖會導致試驗誤差,但可從經驗上加以修正,此種因無法滿足動力相似所造成的誤差,我們稱為尺度效應(scale effect)。因黏性阻力主要受黏性影響,計算船舶之黏性阻力時NR為主要參數。波浪阻力受重力影響,計算波浪阻力時NF為主要參數,且因(NF)M=(NF)S以及(NR)M=(NR)S無法同時滿足,所以無法使模型試驗所得之(CT)M即等於(CT)S。因此,我們只好將阻力分類,由黏性摩擦所造成之阻力為摩擦阻力RF,總阻力RT減去RF剩下的阻力為剩餘阻力 RR,即假設【瀏覽原件】。當試驗時滿足(NF)M=(NF)S,則(CR)M=(CR)S,船模與實船之間其剩餘阻力有(NR)S=λ(RR)M之關係,其中λ=ls/lM。所以,一般阻力試驗主要在求得剩餘阻力係數CR,至於摩擦阻力係數CF則多由平板試驗所得之公式計算,從而計算船模與實船之摩擦阻力。基於此一立論,實船之阻力可依下述方法由阻力試驗之結果計算之:
3
【瀏覽原件】
其中【瀏覽原件】為由於實船表面較船模粗糙所作之阻力修正,對電焊船△CT可取0.0002。
令RA=(RF)M-(RF)S/λ為(NR)M≠(NR)S在RF所作之修正值。
3