ICG for IMT-2000:中间协调组,负责协调工作,使ITU-R和ITU-T之间能定期进行交流,并协调在制定IMT-2000技术标准中出现的各种问题。 4. IMT-2000标准的频率制定
1992年负责全球无线频率管理和分配的WARC-92大会根据当时CCIR对未来陆地移动通信需要频率的估算,确定在2GHz周围总共辟出230MHz频带作为第三代移动通信系统的专用频率:
1885~2025MHz、2110~2200MHz作为2000年以后的全球性移动通信使用,其中卫星通信使用的频段1980~2010MHz和2170-2200MHz最迟到2005年退出。
1995年WRC大会作出决议,对分配给移动卫星业务的频率又做了少量变动,为第二大区增加了2010-2025MHz和2160-2170MHz频段,且要求退出频率的时间提前到2000年。
IMT-2000将使用1875~1975MHz和2110~2160MHz两段频率,目前各国及国际组织对移动通信频率的划分也各不相同。
3G频率划分如下图1-1所示,
图1-1 3G频率划分
5. 目前对3G的研究
目前ITU对3G的研究工作主要由3GPP和3GPP2来承担。
3GPP:是以WCDMA为基础,集合了Erission,Nokia,Simense等欧洲公司以及日本的NTT,韩国的一些公司,共同研究3G的组织。
3GPP2:是以CDMA2000为基础,集合了Qualcomm,Lucent等美国公司及日本的ARIB,韩国的一些公司,共同研究3G的组织。 6. 3G的RTT技术
IMT-2000中最关键的是无线传输技术(RTT)。为了确定IMT-2000 RTT的关键技术,
-3-
ITU对多种无线接入方案(卫星接入除外)进行了艰难的融合,以尽可能达到形成统一的RTT标准的目的。但是,经过一年多的研究之后,ITU发现要想获得不同RTT技术间的完全融合是根本行不通的。因此,1999年11月,ITU TG8/1在芬兰举行的会议上通过了“IMT-2000无线接口技术规范”,最终确定了IMT-2000可用的5种RTT技术,这些技术覆盖了欧洲与日本的WCDMA、美国的cdma2000和中国的TD-SCDMA。
?
WCDMA是欧洲和日本提出的宽带CDMA标准,并且双方已经达成一致,彼此
间差异很小。其技术特点是:频分双工,可适应多种速率和多种业务;前向链路快速功率控制、反向链路相干解调;支持不同载频间切换,基站之间无须同步,适用于高速环境。
?
CDMA2000是北美基于IS-95系统演变而来的。其技术特点是:反向链路相干接
收、前向链路发送分集;基站之间由GPS同步;与IS-95兼容性好,技术成熟、风险小,综合经济技术性能好。
?
TD-SCDMA是中国第一次向ITU提出的拥有自主知识产权的提案,它基于TDM
A和同步CDMA技术的标准。其技术特点是:时分双工(TDD),并结合了智能天线和软件无线电等多种先进技术。 7. CDMA2000标准演进
CDMA2000技术的完整演进过程如错误!未找到引用源。1-2所示。
图1-2 CDMA2000技术的演进过程
真正在全球得到广泛应用的第一个CDMA标准是IS-95A,这一标准支持8K语音编码服务、13K语音编码服务,其中13K语音编码服务质量已非常接近有线电话的语音质量。随着移动通信对数据业务需求的增长,1998年2月,美国Qualcomm公司宣布IS-95B标准用于CDMA基础平台。IS-95B提升了CDMA系统性能,并增加了用户移动通信设备的数据流量, 提供对64 kbit/s数据业务的支持。采用IS-95规范的CDMA系统统称为CDMA One。
对应CDMA2000技术的演进过程,CDMA各阶段系统的描述如表所示。
-4-
表1-1 CDMA系统演进
系统 CDMAOne(IS-95A,IS-95B) 速率 14.4 kbit/s, 64 kbit/s CDMA2000 1x CDMA2000 1x EV-DO CDMA2000 1x EV-DV
153.6 kbit/s 2.4 Mbit/s以上 4 M bit/s以上 语音/数据 数据 语音/数据 2.5G 3G 3G 业务 语音/数据 阶段 2G 1.2 多址技术
多址技术使众多的用户共用公共的通信线路。为使信号多路化而实现多址的方法基本上有三种,它们分别采用频率、时间或代码分隔的多址连接方式,即人们通常所称的频分多址(FDMA)、时分多址(TDMA)和码分多址(CDMA)三种接入方式。0用模型表示了这三种方法简单的一个概念.
ccc信道1信道2信道3信道N? ?信道1信道2信道3? ?信道N信道N? ?信道3t信道2信道1ttfFDMAfTDMAfCDMA
图1-3 三种多址方式概念示意图
FDMA是以不同的频率信道实现通信的,TDMA是以不同的时隙实现通信的,CDMA是以不同的代码序列实现通信的. 1.2.1 频分多址
频分,有时也称之为信道化,就是把整个可分配的频谱划分成许多单个无线电信道(发射和接收载频对),每个信道可以传输一路话音或控制信息。在系统的控制下,任何一个用户都可以接入这些信道中的任何一个。
模拟蜂窝系统是FDMA结构的一个典型例子,数字蜂窝系统中也同样可以采用FDMA,比如GSM和CDMA系统也采用了FDMA。
-1-
1.2.2 时分多址
时分多址是在一个带宽的无线载波上,按时间(或称为时隙)划分为若干时分信道,每一用户占用一个时隙,只在这一指定的时隙内收(或发)信号,故称为时分多址。此多址方式在数字蜂窝系统中采用,GSM系统也采用了此种方式。
TDMA是一种较复杂的结构,最简单的情况是单路载频被划分成许多不同的时隙,每个时隙传输一路突发式信息,TDMA中关键部分为用户部分,每一个用户分配给一个时隙(在呼叫开始时分配),用户与基站之间进行同步通信,并对时隙进行计数。当自己的时隙到来时,移动台就启动接收和解调电路,对基站发来的突发式信息进行解码。同样,当用户要发送信息时,首先将信息进行缓存,等到自己时隙的到来.在时隙开始后,再将信息以加倍的速率发射出去,然后又开始积累下一次突发式传输。
TDMA的一个变形是在一个单频信道上进行发射和接收,称之为时分双工(TDD)。其最简单的结构就是利用两个时隙,一个发一个收。当移动台发射时基站接收、基站发射时移动台接收,交替进行。TDD具有TDMA结构的许多优点:突发式传输、不需要天线的收发共用装置等等。它的主要优点是可以在单一载频上实现发射和接收,而不需要上行和下行两个载频,不需要频率切换,因而可以降低成本。TDD的主要缺点是满足不了大规模系统的容量要求。 1.2.3 码分多址
码分多址是一种利用扩频技术所形成的不同的码序列实现的多址方式,它不像FDMA、TDMA那样把用户的信息从频率和时间上进行分离,它可在一个信道上同时传输多个用户的信息,也就是说,允许用户之间的相互干扰。其关键是信息在传输以前要进行特殊的编码,编码后的信息混合后不会丢失原来的信息。有多少个互为正交的码序列,就可以有多少个用户同时在一个载波上通信。每个发射机都有自己唯一的代码(伪随机码),同时接收机也知道要接收的代码,用这个代码作为信号的滤波器,接收机就能从所有其他信号的背景中恢复成原来的信息码(这个过程称为解扩)。
CDMA按照获得带宽信号所采取的调制方式分为直接序列扩频(DS)、跳频(FH)和跳时(TH),如下0所示:
-2-
频率DSFHTH时间
图1-4 三种CDMA扩频方式概念示意图
1.3 扩频通信原理
1.3.1 扩频通信基本概念
所谓扩展频谱通信,可定义如下:扩频通信技术是一种信息传输方式,其信号所占有的频带宽度远大于所传信息所必需的最小带宽;频带的展宽是通过编码及调制的方法实现的,与所传信息数据无关;在接收端则用相同的扩频码进行相关解调来解扩及恢复所传信息数据。
此定义包括四方面的内容: (1) 信号的频谱被展宽了;
(2) 信号频谱的展宽是通过扩频码序列调制的方式实现的.我们知道,在时间上有限的信号,其频谱是无限的.信号的频带宽度与其持续时间近似成反比,因此,如果用很窄的脉冲序列被所传的信息调制,则可产生很宽的频带信号.这种很窄的脉冲码序列,其码速率是很高的,称为扩频码序列;
(3) 采用的扩频码序列与所传信息数据是无关的,也就是说它与一般的正弦波信号一样,丝毫不影响信息传输的透明性,扩频码序列仅仅起扩展信号频谱的作用;
(4) 在接收端用相关解调来解扩。 1.3.2 扩频通信的基本原理
扩频通信的基本原理如图 1-5所示:
-3-