数字信号处理第七章(2)

2019-01-19 19:30

滤波器的未畸变的相位响应及群延迟响应如下:

Q7.8修改程序P7.1来设计符合习题Q7.3所给指标的椭圆带通滤波器。写出所产生的传输函数的准确表达式。你的设计符合指标吗,使用MATLAB,计算井绘制滤波器的未畸变的相位响应及群延迟响应。 答:表达式如下:

设计的滤波器增益响应如下:

从图中可以总结出设计符合指标。

滤波器的未畸变的相位响应及群延迟响应如下:

7.3:吉布斯现象

Q7.9使用函数sinc编写一个MATLAB程序,以产生截止频率在Wc= 0.4π处、长度分别为81,61,41和21的四个零相位低通滤波器的冲激响应系数,然后计算并画出它们的幅度响应。使用冒号“:”运算符从长度为81的滤波器的冲激响应系数中抽出较短长度滤波器的冲激响应系数。在每一个滤波器的截止频率两边研究频率响应的摆动行为。波纹的数量与滤波器的长度之间有什么关系?最大波纹的高度与滤波器的长度之间有什么关系?你将怎样修改上述程序以产生一个偶数长度的零相位低通滤波器的冲激响应系数? 答:长度为81时幅度响应如下:

长度分别为61,41和21的幅度响应如下:

从中可以观察到由于吉布斯现象产生的幅度响应的摆动行为。

波纹的数量与滤波器的长度之间的关系——波纹的数量减少与长度成正比。 最大波纹的高度与滤波器的长度之间的关系——最大波纹的高度与长度无关。

Q7.10使用函数sinc编写一个MATLAB程序,以产生一个截止频率在Wc= 0.4π处、长度为45的零相位高通滤波器的冲激响应系数,计算并画出其幅度响应。在每一个滤波器的截止频率两边研究频率响应的摆动行为。你将怎样修改上述程序以产生一个偶数长度的零相位高通滤波器的冲激响应系数?

答:长度为45时幅度响应如下:

从中可以观察到由于吉布斯现象产生的幅度响应摆动行为。

在这种情况下你不能改变长度。原因:这是一个零相位滤波器,这意味着它也是一个线性相位滤波器,因为零相是一种特殊的线性相位的子集。现在,理想的有限脉冲响应长度甚至有对称的中点h[n]。使其成了一个线性相位FIR滤波器。二型滤波器不可能是高通滤波器,因为必须在z=-1处有零点,意味着w=+-π。

Q7.11编写一个MATLAB程序,以产生长度分别为81,61,41和21的四个零相位微分器的冲激响应系数,计算并画出它们的幅度响应。下面的代码段显示了怎样产生一个长度为2M+1的微分器。 n=1:M;

b=cos(pi*n)./n;

num=[-fliplr(b) 0 b];

对于每种情况,研究微分器的频率响应的摆动行为。波纹的数量与微分器的长度之间有什么关系,最大波纹的高度与滤波器的长度之间有什么关系? 答:幅度响应分别如下:

从中可以观察到由于吉布斯现象产生的幅度响应的摆动行为。 波纹的数量与微分器的长度之间的关系——两者成正比。

最大波纹的高度与滤波器的长度之间的关系——两者间没有关系。

Q7.12编写一个MA11AB程序,以产生长度分别为81,61.41和21的四个离散时间希尔伯特变换器的冲激响应系数,计算并画出它们的幅度响应。下面的代码段显示了怎样产生一个长度为2M十1的希尔伯特变换器。 n=1:M;

c=sin(pi*n)./2; b=2*(c.*c)./(pi*n); num=[-fliplr(b) 0 b]; 对于每种情况,研究希尔伯特变换器的频率响应的摆动行为。波纹的数量与希尔伯特变换器的长度之间有什么关系?最大波纹的高度与滤波器的长度之间有什么关系? 答:幅度响应如下:

从中可以观察到由于吉布斯现像产生的幅度响应的摆动行为。 波纹的数量与希尔伯特变换器的长度之间的关系——两者成正比。 最大波纹的高度与滤波器的长度之间的关系——两者无关系。

7.4:有限冲激响应滤波器的阶数估计

Q7.13 线性相位低通FIR滤波器的阶数估算,参数如下:

?p =2 kHz, ?s =2.5 kHz, ?p = 0.005, ?s = 0.005, FT = 10kHz 使用 kaiord 的结果为N = 46

使用 ceil 命令的目的是朝正方向最接近整数方向取整。 使用nargin命令的目的是表明函数M文件体内变量的数目。

Q7.14 (a)线性相位FIR滤波器的阶数估算,其中采样频率改为FT = 20 kHz ,则结果为 N=91。 (b) 线性相位FIR滤波器阶数的估计,其中通带波纹改成?p = 0.002和?s = 0.002 结果为 N=57。 (c)线性相位FIR滤波器的阶数估算,其中阻带宽度改成?s = 2.3 kHz ,结果为N=76. 从上述结果和7.13的对比我们可以观察到:

滤波器阶数和采样频率的关系为–对于一个给定的模拟过渡带宽,采样频率的增加导致估算阶数也相应增加,朝下一个整数取整。

其中模拟过渡带宽|Fp-Fs|和Δω的关系:Δω=2pi*|Fp-Fs|/FT。 因此增加FT会减小Δω。

滤波器阶数和通带波纹宽度的关系为估计的阶数大致和log(底数为10)成比例的扩散。 滤波器阶数和过渡带宽度的关系为在舍入的时候,阶数随着过渡带宽成比例的改变。 有两个因素增加过渡带宽来分割顺序。

Q7.15 线性相位FIR低通滤波器阶数的估算,其中滤波器满足7.13给的规格,使用kaiserord的结果为N=54

正确结果:kaiserord([2000 2500],[1 0],[0.005 0.005],10000)

将上述结果和7.13比较我们观察到:用凯瑟来估算阶数是较小的。因为凯瑟使用了一个不同的近似估计。这种估计经常和FIR设计的凯瑟窗一起用。

Q7.16 线性相位FIR低通滤波器的阶数估算满足的规格和7.13中的一样,使用remezord函数的结果为N=47.

正确结果:firpmord([2000 2500],[1 0],[0.005 0.005],10000) 通过和7.13和7.15比较我们可以观察到:在这里,firpmord给了一个比凯尔更大比凯瑟更小一点的结果。使用凯尔则更接近与一般情况。而使用凯瑟和firpmord则有专门的用途。 Q7.17 线性相位带通FIR滤波器的阶数估算满足如下规格:通带边界为1.8和3.6kHz,阻带边界为1.2kHz到4.2kHz,通带波纹?p = 0.01,阻带波纹 ?s = 0.02,FT = 12 kHz。 使用kaiord 函数求得的结果为:通带波纹δp= 0.1,得到的结果为:kaiord([1800 3600],[1200 4200],0.1,0.02,12000),N=20。但是当δp= 0.01时结果为:kaiord([1800 3600],[1200 4200],0.01,0.02,12000),得到的N=33。所以答案不唯一,可以选择其中一个。 Q7.18 线性相位带通FIR滤波器的阶数估算,其中FIR滤波器的规格和7.17一样,则使用kaiserord的结果为同样,它也有矛盾。当使用δp= 0.1时,得到的结果为:kaiserord([1200


数字信号处理第七章(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:西南师大附中高2011级第三次月考(期中)语文试题

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: