限时规范训练二十二 不等式选讲
限时30分钟,实际用时
分值40分,实际得分
解答题(本题共4小题,每小题10分,共40分)
1.(2017·吉林长春调研)设函数f(x)=2|x-1|+x-1,g(x)=16x-8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.
(1)求M;
122
(2)当x∈M∩N时,证明:xf(x)+x[f(x)]≤.
4
?3x-3,x∈[1,+?
解:(1)f(x)=?
?-∞,?1-x,x2
,
4
当x≥1时,由f(x)=3x-3≤1得x≤,
34
故1≤x≤;
3
当x<1时,由f(x)=1-x≤1得x≥0,故0≤x<1. 4
所以f(x)≤1的解集M={x|0≤x≤}.
3
?1?22
(2)证明:由g(x)=16x-8x+1≤4得16?x-?≤4,
?4?
13132
解得-≤x≤,因此N={x|-≤x≤},
44443
故M∩N={x|0≤x≤}.
4
当x∈M∩N时,f(x)=1-x,于是xf(x)+x·[f(x)]=xf(x)[x+f(x)]=xf(x)=x(1-x)1?1?21=-?x-?≤. 4?2?4
2.(2017·江南十校联考)设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M. 111
(1)证明:|a+b|<;
364
(2)比较|1-4ab|与2|a-b|的大小,并说明理由. 解:(1)证明:设f(x)=|x-1|-|x+2| 3,x≤-1??
=?-2x-1,-1<x<1??-3,x≥1
2
2
11由-2<-2x-1<0,解得-<x<,
22