[高考]2018-2019学年数学高考(理)二轮专题复习:第一部分专题

2019-01-26 12:24

限时规范训练二十二 不等式选讲

限时30分钟,实际用时

分值40分,实际得分

解答题(本题共4小题,每小题10分,共40分)

1.(2017·吉林长春调研)设函数f(x)=2|x-1|+x-1,g(x)=16x-8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.

(1)求M;

122

(2)当x∈M∩N时,证明:xf(x)+x[f(x)]≤.

4

?3x-3,x∈[1,+?

解:(1)f(x)=?

?-∞,?1-x,x2

4

当x≥1时,由f(x)=3x-3≤1得x≤,

34

故1≤x≤;

3

当x<1时,由f(x)=1-x≤1得x≥0,故0≤x<1. 4

所以f(x)≤1的解集M={x|0≤x≤}.

3

?1?22

(2)证明:由g(x)=16x-8x+1≤4得16?x-?≤4,

?4?

13132

解得-≤x≤,因此N={x|-≤x≤},

44443

故M∩N={x|0≤x≤}.

4

当x∈M∩N时,f(x)=1-x,于是xf(x)+x·[f(x)]=xf(x)[x+f(x)]=xf(x)=x(1-x)1?1?21=-?x-?≤. 4?2?4

2.(2017·江南十校联考)设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M. 111

(1)证明:|a+b|<;

364

(2)比较|1-4ab|与2|a-b|的大小,并说明理由. 解:(1)证明:设f(x)=|x-1|-|x+2| 3,x≤-1??

=?-2x-1,-1<x<1??-3,x≥1

2

2

11由-2<-2x-1<0,解得-<x<,

22


[高考]2018-2019学年数学高考(理)二轮专题复习:第一部分专题.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:光缆敷设方法介绍

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: