(3)已知|b|
解:(1)由|f(0)|=|f(1)|=|f(-1)|知|c|=1,|a+b+c|=1,|a-b+c|=1,∴(a+b+c)2=(a-b+c)2,即4(a+c)b=0,∵b≠0,∴a+c=0,即:a=-c。又∵a>0,∴a=1 ,c=-1, 此时b=+1,∴f(x)=x2 + x-1。于是
f(x)?(x?12)?b2a254??54,∴[f(x)]min??54。
(2)依题意??1,即b=-2a,∵a>0且b≠0,∴b<0。令f(x)=0的两根为x1,x2,则函数y=f(x)的图
ca象与x轴的两个交点为(x1,0),(x2,0)且x1?x2?2,x1x2?
,满足题设的充要条件是
,∴a>0 c?0 b<0且b=-2a
?4a2?4ac?0???b2?4ac?0?a?c?0?a?c?????????c2?|a?c|?a?c?0|x?x|?(x?x)?4x1x2?2??|1?|?11212?a?为所求
(3)∵|2b|=|(a+b+c)-(a-b+c)|<|a+b+c|+|a-b+c|<2,∴|b|?1 ,又|b|?|a|,∴|又|c|=|f(0)|?1,又|f(?b2a)|?|4ac?b4a2ba|?1 ,
|?|c?b24a|?|c|?14|ba|?|b|?54,而f(x)所示开口向上的抛物线且|x|<1,
b2a则|f(x)|的最大值应在x=1或x=-1或x=-
b2a时取到,因|f(-1)|<1, |f(1)|?1, |f(-)|?54,故|f(x)|?54得证。
方法二:令f(x)=uf(1)+vf(-1)+(1-u-v)f(0) 则f(x)=(a+b+c)u+(a-b+c)v+(1-u-v)c
2??u?v?x +bx+c=a(u+v)+b(u-v)+c,∴???u?v?x2?x?x?u??2??2x?x?v??2? ax
2
。
∴f(x)=∴|x2?x2x2f(1)??xx2?x2x2f(?1)?(1?x)f(0)?x2222, 而|f(1)| ?1, |f(-1)|?1, |f(0)|?1,
x?x22f(x)|?|2f(1)?f(1)?(1?x)f(0)|<||?|x?x22|?|1?x| x∈[-1, 1]
2=|x|·x?12?|x|?1?x2?1?x=?|x|2?|x|?1=?(|x|?12)?254?54 。
综上,当|f(0)|?1, |f (-1)|?1, |f(-1)|?1, |x|?1时,|f(x)|?54方法三:我们可以把f?0??1,f?1??1和f?-1??1当成两个独立条件,先用f??1?,f?0?和f?1?来表示a,b,c.
∵f??1??a?b?c,f?1??a?b?c,f?0??c,∴a?12(f?1??f??1??2f?0?),b?12(f(1)?f(?1)),c?f?0?,
∴
?x2?x??x2?x?????f?0?1?x2f?x??f?1??f??1??????22??????. 当?1?x?1时,x?x,所以,根据绝对值不
2第六讲 二次函数 11
x?2等式的性质可得:
x?x222?x2,
x?x222x?x?22,1?x2?1?x2
∴ f?x??f?1??x?x2?f??1??x?x2?f?0??1?x2?x2?x2?x2?x2?1?x2
?x2?x??x?x2??????????2??(1?x)??x2?x?1??(x?1)?25?5.
??2????2??综上,问题获证.
244第六讲 二次函数 12