2012-2013高等数学第一学期期末考试(张家港校区理工类)试卷及(2)

2019-01-26 16:07

1?6t21?原式=?dx??dt?61?dt………………………..…………….1 2??32001?t20??1?t?1?x3?=6? ………………………..………………….1

2121?sinx??cosx?x-sinx5.解:由题意得. f(x)=?........................................ 1 ?=2xx???xf?(x)dx=?xdf(x)=xf(x)-?f(x)dx ........................................ 2

cosx?x-sinxsinx-+C ........................................ 1

x2x2sinx+C. ....................................... 1 =cosx-x=x?1dy(arctant)?1?t21???? ........................................ 2 6. 解:

tdx[ln1?t2]?t21?t1)??1(22dy1?ttt????3? ..............................................................3

tdx2[ln1?t2]?t1?t22四、证明:

?a?af(x)dx??f(x)dx??f(x)dx ..................................................... 1

?a00aaa000a令x??t,?f(x)dx??f(?t)d(?t)??f(?t)dt??f(?x)dx ..................2

?a0??f(x)dx=?f(x)?f(?x)dx ..................................................... 1

-a0aa?cosxcosxcosx4dx?(???41?ex?01?ex?1?e-x)dx ..................................................... 2

4?? ? =?40cosxdx ..................................................... 1

2 ..................................................... 1 2五、解:令x?tx0?u

xxx?tf?x?t?dt??0?x?u?f?u?du?x?0f?u?du??0uf?u?du.............................2

所以

?0f?t?dt?x?x?0f?u?du??0uf?u?du

xxx求导得:

f?x??1??0f?u?du?xf?x??xf?x??1??0f?u?du .........................2

xx第 6 页 共 7 页

求导:

f??x??f?x? ............................ ................................. ......................................1

?f?x??cex............................ ................................. .....................................1

由等式f?x??1??0f?u?du得f?0??1 则c?1 ?fx?x??xe................2

六、解:(1)A=?10y2dy................... ................................. ......................................2 2y311=................... ................................. ......................................1

606(2)V=

?120?(1-2x)2dx ................. ......................................2

1423?x2+x2)2=................. ......................................2 =?(x-3120七、证明:

由积分中值定理:????0,?,使得

??1?3?f(1)?3?e1231-x0221f(x)dx?3?e1-?f(?)(?0)?e1-?f(?) ......................................... 2

3设 F(x)?e1?xf(x) .................................................... 2 则F(x)在??,1?上连续,在??,1?内可导

且F(?)?f(1)?F(1) .................................................... 2

由罗尔定理,至少存在一点???0,??(0,1)使 F?(?)?0 .................................. 2 即f'(?)?2?f(?) .................................................... 1

2??1?3?第 7 页 共 7 页


2012-2013高等数学第一学期期末考试(张家港校区理工类)试卷及(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:湖北省武汉市部分学校联考2016届高三(上)起点调研化学试题(解

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: