解决有关百分率的问题必须首先明确与这些百分数有关的基本等量关系如本例中的产油量=油菜籽亩产量×含油率,还有利息=利率×本金,等等。
作业:
课本108面5、6、9题。
五、板书设计: 油菜种植的计算 一、问题导入 二、例题
三、课堂练习
3.4.3球赛积分表问题
[教学目标]1、学会解决信息图表问题的方法;2、经历探索球赛积分中数量关系的过程,进一步体会方程是解决实际问题的数学模型,明确用方程解决实际问题时,还要检验方程的解是否符合问题的实际意义。
[重点难点] 解决信息图表问题是重点;从图表中获取有用的信息是难点。 〔教学方法〕指导探究,合作交流 〔教学资源〕小黑板 [教学过程] 一、问题导入
我们都喜欢打篮球,你知道篮球比赛胜一场积多少分,负一场积多少分吗?我们今天就来讨论与球赛积分有关的问题。
二、例题
某次篮球赛积分榜 队 名 前 进 东 方 光 明 比赛场次 14 14 14 胜 场 10 10 9 负 场 4 4 5 积 分 24 24 23
蓝 天 雄 鹰 远 大 卫 星 钢 铁 14 14 14 14 14 9 7 7 4 0 5 7 7 10 14 23 21 21 18 14
(1)用式子表示总积分与胜、负场数之间的数量关系; (2)某队的胜场总积分能等于它的负场总积分吗?
分析:要解决这个问题,必须求出胜一场积多少分,负一场积多少分。你能从积分表中看出负一场积多少分吗?
从最后一行可以看出负一场积1分。
你能从表中看出求胜一场积分的等量关系吗? 由第四行可知,胜场得分+负场得分=23 设胜一场得x分,则 9x+5×1=23 解之,得x= 2
用表中的其它行可以验证:负一场得1分,胜一场得2分。 (1)若某队胜m场,那么总积分是: 2m+(14-m)=m+14
(2)若某队的胜场总积分等于它的负场总积分,由(1)得 2m=14-m 解得m=14/3
你能回答这个问题吗?
某队的胜场总积分不能等于它的负场总积分,因为获胜的场数不能是分数。
注意:用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要注意方程的解是否符合问题中的实际意义。
拓展:如果删去积分榜的最后一行,你还能知道胜一场得多少分,负一场得多少分吗? 思考:设胜一场得x分,那么负一场得多少分?还可以怎么表示?
9x7x由第三行知,负一场得23?;由第五行知负一场得21?.由此得 5723?9x523?9x57x=21? 解之,得x=2 7=23?59?2=1.
所以胜一场得2分,负一场得1分.
三、课堂练习
某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章价格各是多少元?
共计145元 共计280元 四、课堂小结
1、解决有关图表信息问题,要充分利用图表中的数据信息;
2、利用方程解决实际问题时,不仅可以求解,还要看解是否符合实际意义,由此,可以利用方程对一些问题进行推理判断。 作业:
课本107-2;108-7、8题。 五、板书设计: 球赛积分表问题
一、问题导入 二、例题
三、课堂练习
第三章第三阶段复习3.4
一、双基回顾
1、列方程解应用题的步骤
(1)审:明确已知什么,求什么及基本关系。 (2)找:找能表示题目全部含义的相等关系。
(3)设:设未知数。可直接设,也可间接设,要尽量使列出的方程简单。 (4)列:根据等量关系列方程。 (5)解:解方程
(6)验:检验方程的解和解是否符合实际问题。 (7)答:怎么问怎么答。 2、分析数量关系的方法
(1)译式法:把题目中关键性的数量关系语句译成含有未知数的代数式。
(2)列表法:用一类量作为“行”,一类量作为“列”制成表格,把已知量和未知量(用所设字母表示)“对号入座”。
(3)图解法:用图形表示题目中的数量关系,例如行程问题中的线段图。 3、设未知数的方法
(1)直接设未知数:题目求什么就设什么。
(2)间接设未知数:设的未知数不是题目直接求的量。
(3)设辅助未知数:所设未知数仅作为题目中量与量之间关系的桥梁,它在解方程的过程中会自然消去。
二、例题导引
例1 某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路,虽然行车的速度增加到每小时12千米,但比去时还是多用了10分钟,求甲、乙两地的距离。
例2 张叔叔用若干元人民币购买了一种年利率为10%的一年期债券,到期后他取出本金的一半用作购物,剩下的一半及所得的利息又全部买了这种一年期的债券(利率不变),到期后得本息和1320元,问张叔叔当初购买这种债券花了多少钱?
例3 某市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费,如果超过60立方米,超过部分按每立方米1.2元收费。已知11份某用户的煤气费平均每立方米0.88元,那么11月份该用户应交煤气费多少元?
例4 某学校八年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:“羽毛球及球拍都打9折”优惠,乙商店说:“买一副球拍赠送2只羽毛球”优惠。
(1)学校准备花90元钱全部用于买2副羽毛球及羽毛球若干只,问到哪家商店购买更合算?
(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店一样合算?
三、练习提高
1、用40㎝长的铁丝围成一个长方形,已知长是宽的3倍,则围成的长方形的面积为 2㎝.
2、要锻造一个直径为12㎝,高为10㎝的圆柱形零件,需要直径为16㎝的圆柱形钢条 ㎝.
3、甲、乙、丙三辆卡车所运货物的吨数比是6:7:4.5,已知甲车比丙车多运12吨货物,则三辆卡车共运货物 吨.
4、某商品提价10%后,欲恢复原价,则应降价〔 〕
A、10% B、9% C、10011% D、
1009%
5、一个两位数,数字之和为11,如果原数加45得到的数和原数的两个数字交换位置后恰好相等,问原数是多少?
第三章第三阶段复习
1、某城市现有人口42万人,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?
2、张先生于1999年3月8日买入1999年发行的5年期国库券1000元,回家后他在存单的背面记下了当国库券于2004年3月8日到期后他可获得的利息数为390元。若张先生计算无误的话,则该种国库券的年利率是多少?(利息=本金×存期×年利率,国库券无利息税。)
能力提高
3、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了,则这次买卖的盈亏情况为〔 〕
A、赚6元 B、不亏不赚 C、亏4元 D、亏24元
4、一张试卷只有25道选择题,做对一道得4分,不做或做错一题倒扣1分,某学生做了全部试题,共得70分,他做对了的题数是〔 〕
A、17 B、18 C、19 D、20
5、某市出租车的收费标准是:起步价5元(行驶距离不超过3千米,都需付5元车费),超过3千米,每增加1千米,加收1.2元。某人乘出租车到达目的地后共支付车费11元,那么此人坐车行驶的路程最多是多少?
6、某商品售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获得10%,此商品的进价是每件多少元?
7、一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟的时候,学校将一个紧急通知传给队长。通讯员立即从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少时间可以追上学生队伍?
8、“五·一”期间,某校由4位教师和若干位学生组成的旅游团,拟到国家4A级旅游风景区-闽西豸山旅游,甲旅行社的收费标准是:如果买4张全票,则其余的人按七折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,旅游团体票按原价的八