高等数学(下)模拟试题一答案
一、1. 2, 0; 2.
13?3,1,?2?; 3 ?1,3?; 4? , 1.
214二、1. C; 2. A; 3 C;4 D 三、1. (6分) 解:?df?1?1z?f?f?fdx?dy?dz ?x?y?z1?1z1?x????z?y?11?x?dx???yz?y???x??x??x??1dy?ln?2?????2dz yy?????y?z1z?df(1,1,1)?dx?dy
2. (6分)解:在方程两端对x求偏导数得
2u?u?z?z?2z?1?0,而?y2 ?x?x?x?u1?2zy2?代入得 ?x2u?2u因此2??x?u1?2zy2?将,代入化简得 ?x2u2u(?2y2?y2)?(1?2zy2)?24u2?u?x
?2u4u2y4?(1?2zy2)2? 23?x4u3. (6分)解:在原积分路径上添加从O到A的一段使之为逆时针方向的封闭曲线,在该封闭曲线上的积分用格林公式,有
??(exsin y?my)dx?(excos y?m)dy???mdxdy?a2m?/8
D而从O到A的积分为0,故
?L(exsin y?my)dx?(excos y?m)dy?a2m?/8
4. (6分)解:由高斯公式得
原式????(x2?y2)dxdydz??d? ?1dr ?r2dz?2??r3(1?r)dr??00r02?111?10
5. (6分)解:
??z??xxx?y22,?z??yyx?y22;
?s?????(D?z2?z2)?()dxdy???2dxdy?2? ?x?yDn26. (6分)解:原式??n2n?1?x3n?1?x2?n2n?1?n2x3(n?1)?2x2?n(n?1?2x3)n?1
11'?n?1??()??nx2(1?x)1?xn?1?原式?2x11,x?(?,6)326(1?2x)222
四、(7分)解 待求直线L与L2相交有交点P(x0,y0,z0),此交点在L2上 故可设P(x0,y0,z0)=P(2t,t,t)
因直线L上有两点A(1,2,1),p(2t,t,t),故直线L方向s??2t?1,t?2,t?1? 又由L?L1,得s??3,2,1?,即3(2t?1)?2(t?2)?(t?1)?0?t?得 s??,?8 9?7?9101?,??//?7,?10,?1? 99?x?1y?2z?1??。 7?10?1故直线L的议程为:
五、(7分)解:到坐标面xoy距离为最短的点(x,y,z) ,d?z, 令F(x,y,z,?)?d??(x?x?z)??(?y)
2221x??2x???0?2x??x?1?x?1?2y????0???由极值条件得?2z???0 , 得?y?1 或?y??1 ,
?z?2?z??2?x2?y2?z?0????1??y?0?x分别代入均得d?2,由几何意义,(1,1,2)和(?1,?1,?2)均为所求。
六、解 由题设所给曲线积分与路径无关,故
??2?f(x)?x?yf(x)???? ?y?x?即
df(x)?f(x)?2x是一阶非齐次线性方程,由求解公式有通解: ?x??dxf(x)?e???2xe??dxdx?C?
?xx??ex??2xedx?C??2(x?1)?Ce.??即 f(x)?-2(x?1)?Cex.由f(0)?2,得C?4
故f(x)?4ex?2(x?1). 七 解: ?an?1?b(an?an?1)2b?b? ?0?an?1?an???a1?b1?b??n?b????n?1??a11?b??n?b? ?1iman?0 (?1im???0)n??n??1?b?? 0?Sn?a1?a2??an ?a1?b(a1?a2)?b(a2?a3)???b(an?1?an)?(1?b)a1?ba ? (1+b)a1而
?an?1?n为正项级数,??Sn??有上界,从而?Sn?收敛,即
?an?1?n收敛。
八、(7分)解:上式可化为
dx6x???yx2 dyy令z?x可得
?1dz6?z?y dyyCy21Cy2其通解为z?6?得?6?
y8xy8九、(5分)解:设C(x,0),B(x,f(x))即AB的方程式为y?f(x)
绕x轴旋转所得的旋转曲面方程为z2?f2(x)?y2
设旋转区域为?则
1??f2(x)dx0x???xdxdydz??4x,即5xx42?xf(x)dx??xdx??dydz
05?0Dyzxx4?x?f2(x)dx???xf2(x)dx
005 两边求导 4?x0f2(x)dx?xf2(x)
再求导 4f2(x)?f2(x)?2xf(x)f?(x)
解得 f(x)?Cx
32