基于单片机的温度数据采集系统实验报告(2)

2019-02-15 12:22

单片机: AT89C52简介

如图5.1-1所示为AT89C52芯片的引脚图。兼容标准MCS-51指令系统的AT89S52单片机是一个低功耗、高性能CHMOS的单片机,片内含4KB在线可编程Flash存储器的单片机。它与通用80C51系列单片机的指令系统和引脚兼容。

AT89C52单片机片内的Flash可允许在线重新编程,也可用通用非易失性存储编程器编程;片内数据存储器内含128字节的RAM;有40个引脚,32个外部双向输入/输出(I/O)端口;具有两个16位可编程定时器;中断系统是具有6个中断源、5个中断矢量、2级中断优先级的中断结构;震荡器频率0到33MHZ,因此我们在此选用12MHZ的晶振是比较合理的;具有片内看门狗定时器;具有断电标志POF等等。AT89S51具有PDIP、TQFP和PLCC三种封装形式[8]。

图5.1-1 AT89S52引脚图

上图就是PDIP封装的引脚排列,下面介绍各引脚的功能。 5.2 AT89C52引脚说明

P0口:8位、开漏级、双向I/O口。P0口可作为通用I/O口,但须外接上拉电阻;作为输出口,每各引脚可吸收8各TTL的灌电流。作为输入时,首先应将引脚置1。P0也可用做访问外部程序存储器和数据存储器时的低8位地址/数据总线的复用线。在该模式下,P0口含有内部上拉电阻。在FLASH编程时,P0口接收代码字节数据;在编程效验时,P0口输出代码字节数据(需要外接上拉电阻)。

P1口:8位、双向I/0口,内部含有上拉电阻。P1口可作普通I/O口。输出缓冲器可驱动四个TTL负载;用作输入时,先将引脚置1,由片内上拉电阻将其抬到高电平。P1口的引脚可由外部负载拉到低电平,通过上拉电阻提供电流。在FLASH并行编程和校验时,P1口可输入低字节地址。在串行编程和效验时,P1.5/MO-SI,P1.6/MISO和P1.7/SCK分别是串行数据输入、输出和移位脉冲引脚。

P2口:具有内部上拉电阻的8位双向I/O口。P2口用做输出口时,可驱动4各TTL负载;用做输入口时,先将引脚置1,由内部上拉电阻将其提高到高电平。若负载为低电平,则通过内部上拉电阻向外部输出电流。CPU访问外部16位地址的存储器时,P2口提供高8位地址。当CPU用8位地址寻址外部存储时,P2口为P2特殊功能寄存器的内容。在FLASH并行编程和校验时,P2口可输入高字节地址和某些控制信号。

P3口:具有内部上拉电阻的8位双向口。P3口用做输出口时,输出缓冲器可吸收4各TTL的灌电流;用做输入口时,首先将引脚置1,由内部上拉电阻抬位高电平。若外部的负载是低电平,则通过内部上拉电阻向输出电流。在与FLASH并行编程和校验时,P3口可输入某些控制信号。P3口除了通用I/O口功能外,还有替代功能,如表5.3-1所示。

表5.3-1 P3口的替代功能

引脚 P3.0 P3.1 P3.2 符号 RXD TXD /INT0 说明 串行口输入 串行口输出 外部中断0 P3.3 P3.4 P3.5 P3.6 P3.7 /INT1 T0 T1 /WR /RD 外部中断1 T0定时器的外部的计数输入 T1定时器的外部的计数输入 外部数据存储器的写选通 外部数据存储器的读选通

RST:复位端。当振荡器工作时,此引脚上出现两个机器周期的高电平将系统复位。

ALE/

:当访问外部存储器时,ALE(允许地址锁存)是一个用于锁存地

址的低8位字节的书粗脉冲。在Flash 编程期间,此引脚也可用于输入编程脉冲(

)。在正常操作情况下,ALE以振荡器频率的1/6的固定速率发出脉冲,

它是用作对外输出的时钟,需要注意的是,每当访问外部数据存储器时,将跳过一个ALE脉冲。如果希望禁止ALE操作,可通过将特殊功能寄存器中位地址为8EH那位置的“0”来实现。该位置的“1”后。ALE仅在MOVE或MOVC指令期间激活,否则ALE引脚将被略微拉高。若微控制器在外部执行方式,ALE禁止位无效。

:外部程序存储器读选取通信号。当AT89S51在读取外部程序时, 每

个机器周期 将PSEN激活两次。在此期间内,每当访问外部数据存储器时,将跳过两个

信号。

/Vpp:访问外部程序存储器允许端。为了能够从外部程序存储器的0000H

至FFFFH单元中取指令,必须接地,然而要注意的是,若对加密位1进行编程,则在复位时,

的状态在内部被锁存。

应接VCC。不当选择12V编程电源时,在Flash编程期间,

执行内部程序

这个引脚可接12V编程电压。

XTAL1:振荡器反向放大器输入端和内部时钟发生器的输入端。 XTAL2:振荡器反相放大器输出端[9]。

电源模块: 电源电路

电源变压器是将交流电网220V的电压变为所需要的电压值。交流电经过二极管整流之后,方向单一了,但是电流强度大小还是处在不断地变化之中。这种脉动直流一般是不能直接用来给集成电路供电的,而要通过整流电路将交流电变成脉动的直流电压。由于此脉动的直流电压还含有较大的纹波,必须通过滤波电路加以滤除,从而得到平滑的直流电压。滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近稳恒的直流电。但这样的电压还随电网电压波动,一般有±10%左右的波动,负载和温度的变化而变化,因而在整流、滤波电路之后,还需要接稳压电路。

稳压电路的作用是当电网电压波动,负载和温度变化时,维持输出直流电压稳定。220V交流电通过9V变压器变为9V的交流电,9V交流电通过四个二极管的全桥整流后变为9V直流电,然后经过电解电容(470μF)进行一级滤波,以去除直流电里面的杂波,防止干扰。9V直流电出来后再经过三端稳压器LM7805稳压成为稳定的5V电源,其中7805的Vin脚是输入脚,接9V直流电源正极,GND是接地脚,接9V直流电源负极,Vout为输出脚,它和接地脚的电压就是+5V了。5V电源出来再经过电解电容的二级滤波,使5V电源更加稳定可靠。同时在5V稳压电源加上一个10K的电阻和一个红色发光二极管,当上电后,红色发光二极管点亮,表示电源工作正常。此时一个稳定输出5V的电源已经设计好,对于本设计它完全能够满足单片机及集成块所需电源的要求[2]。电源原理图如图所示。

2.存储器设计

本设计采用的是AT24C02外扩存储器

", 工作电压:1.8V~5.5V

", 输入/输出引脚兼容5V ", 应用在内部结构:

128x8(1K),256x8(2K),512x8(4K),1024x8(8K),2048x8(16K) ", 二线串行接口

", 输入引脚经施密特触发器滤波抑制噪声 ", 双向数据传输协议

", 兼容400KHz(1.8V,2.5V,2.7V,3.6V ) ", 支持硬件写保护

", 高可靠性:读写次数:1,000,000 次– 数据保存:100 年

引脚说明

串行时钟信号引脚(SCL):在 SCL 输入时钟信号的上升沿将数据送入 EEPROM件,并在时钟的下降沿将数据读出。 串行数据输入/输出引脚(SDA):SDA 引脚可实现双向串行数据传输。该引脚为开漏输出,可与其它多个开漏输出器件或开集电极器件线或连接。 24C04 仅使用 A2、A1 作为硬件连接的器件地址输入引脚,在一个总线上最多可寻址四个 4K 器件。A0 引脚内部未连接。 器件操作

时钟及数据传输:SDA引脚通常被外围器件拉高。SDA引脚的数据应在 SCL 为低时变化;当数据在SCL 为高时变化,将视为下文所述的一个起始或停止命令。 起始命令:当 SCL 为高,SDA由高到低的变化被视为起始命令,必须以起始命令作为任何一次读/写操作命令的开始(参见图5)。 停止命令:当 SCL为高,SDA 由低到高的变化被视为停止命令,在一个读操作后,停止命令会使 EEPROM 进入等待态低功耗模式(参见图5)。

应答:所有的地址和数据字节都是以 8 位为一组串行输入和输出的。每收到一组 8 位的数据后,EEPROM都会在第9 个时钟周期时返回应答信号。每当主控器件接收到一组8 位的数据后,应当在第9 个时钟周期向

EEPROM 返回一个应答信号。收到该应答信号后,EEPROM 会继续输出下一组8 位的数据。若此时没有得到主

控器件的应答信号,EEPROM 会停止读出数据,直到主控器件返回一个停止命令


基于单片机的温度数据采集系统实验报告(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:俞敏洪演讲录:生活在自在与豁达的心境中

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: